The Investigation of Composition and Corrosion Resistance of PIII Nitrided M50 Steel

Article Preview

Abstract:

The evolution of composition and corrosion resistance of PIII nitrided M50 steel with various process parameters was investigated. Besides nitrogen, the oxygen also was detected in modified layer, which came from the H2O and CO2 desorbed from chamber walls at high temperature. The results show that the content and diffusion distance of oxygen and nitrogen increase with temperature firstly; while the temperature exceeds 350 , the content and diffusion distance of oxygen and nitrogen reduce dramatically, because of the external diffusion of oxygen and nitrogen in form of NOx gas. The implantation current density is beneficial to increase the content and diffusion distance of oxygen and nitrogen. The corrosion tests show that the sample with higher oxygen and nitrogen content has better corrosion resistance.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 154-155)

Pages:

475-479

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.M. Rangel, M.H. Simplicio, A.C. Consiglieri, B.R. Nielsen, B. Torp, N. Teixeira, J.G. Alves, M.F. Sliva, A. Dodd and J. Kinder: Surface & Coatings Technology Vol. 51 (1992), pp.483-488.

DOI: 10.1016/0257-8972(92)90286-j

Google Scholar

[2] B. Torp, B.R. Nielsen, A. Dodd, J. Kinder, C.M. Rangel, M.F. DaSliva and B. Courage: NIMB Vol. 80-81 (1993), pp.246-249.

Google Scholar

[3] G.K. Hubler, I.L. Singer and C.R. Clayton: Materials Science and Engineering Vol. 69 (1985), pp.203-210.

Google Scholar

[4] G. Thorwarth, S. Mändl and B. Rauschenbach: Surface & Coatings Technology Vol. 125 (2000), pp.94-99.

DOI: 10.1016/s0257-8972(99)00605-2

Google Scholar

[5] C. Blawert, B.L. Mordike, U. Rensch and H. Oettel: Surface & Coatings Technology Vol. 142-144 (2001), pp.376-383.

DOI: 10.1016/s0257-8972(01)01314-7

Google Scholar

[6] D. Manova, S. Mändl, H. Neumann and B. Rauschenbach: Surface & Coatings Technology Vol. 200 (2005), pp.137-140.

DOI: 10.1016/j.surfcoat.2005.02.085

Google Scholar

[7] Y.L. Chan, S.L. Wu, X.M. Liu, Paul K. Chu, K.W.K. Yeung, W.W. Lu, A.H.W. Ngan, K.D.K. Luk, D. Chan and K.M.C. Cheung: Surface & Coatings Technology Vol. 202 (2007), pp.1308-1312.

DOI: 10.1016/j.surfcoat.2007.07.092

Google Scholar

[8] G. Thorwarth, S. Mändl and B. Rauschenbach: Surface and Coatings Technology Vol. 128-129 (2000), pp.116-120.

DOI: 10.1016/s0257-8972(00)00586-7

Google Scholar

[9] C. Anandan, V.K. William Grips, V. Ezhil Selvi and K.S. Rajam: Surface & Coatings Technology Vol. 201 (2007), pp.7873-7879.

DOI: 10.1016/j.surfcoat.2007.03.034

Google Scholar

[10] G.J. Wan, M.F. Maitz, H. Sun, P.P. Li and N. Huang: Surface & Coatings Technology Vol. 201 (2007), pp.8267-8272.

Google Scholar

[11] Zhongwen Li, Guangze Tang, Xinxin Ma, Mingren Sun and Liqin Wang: IEEE Transaction on Plasma Science (in Pressure).

Google Scholar

[12] P. Fielitz, M.P. Macht, V. Naundorf and H. Wollenberger: Journal of Nuclear Materials Vol. 251 (1997), pp.123-131.

DOI: 10.1016/s0022-3115(97)00220-1

Google Scholar

[13] M. Lu, C. Lupu and J.W. Rabalais: Journal of Physics: Condensed Matter Vol. 16 (2004), pp.581-602.

Google Scholar