Longest Cycles Embedding in Faulty Augmented Cube Networks

Article Preview

Abstract:

The augmented cube is one of the most versatile and efficient interconnection networks (networks for short) so far discovered for parallel computation. In this paper, the topological structure of dimensional augmented cube is analyzed. The properties related to cycle embedding in faulty have been investigated. Let denote the set of fault links. This study demonstrates that when , for each nonfault link of augmented cube networks, lies on a longest fault free cycle which contains every nodes of .

You might also be interested in these eBooks

Info:

Periodical:

Pages:

285-290

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Ascheuer: Hamiltonian path problems in the on-line op-timization of flexible manufacturing systems, PH.D. Thesis, University of Technology, berlin, Germany, (1995).

Google Scholar

[2] M.J. Ma, G.Z. Liu, J.M. Xu: Panconnectivity and edge-fault-tolerant pancyclicity of augmented cubes, Parallel Computing, Vol. 33 (2007), pp.36-42.

DOI: 10.1016/j.parco.2006.11.008

Google Scholar

[3] H.C. Hsu, L.C. Chiang, J.M. Tan and L.H. Hsu: Fault hamiltonicity of augmented cubes, Parallel Computing, Vol. 31(2005), pp.131-145.

DOI: 10.1016/j.parco.2004.10.002

Google Scholar

[4] W.W. Wang, M.J. Ma, . m. Xu: Fault-tolerant pancyclicity of augmented cubes, Information Processing Letters, Vol. 103 (2007), pp.52-56.

DOI: 10.1016/j.ipl.2007.02.012

Google Scholar

[5] J.M. Xu, M.J. Ma, Z.Z. Du: Edge-fault-tolerant pancyclicity of hypercubes and folded hypercubes, Australasion journal of combinatorics, Vol. 35 (2006), pp.7-16.

Google Scholar

[6] C.H. Tsai, J.J.M. Tan, T. Liang, L.H. Hsu: Fault-tolerant Hamiltonian laceablity of hypercubes, Information Process lett., Vol. 83 (2002), pp.301-306.

DOI: 10.1016/s0020-0190(02)00214-4

Google Scholar

[7] H.M. Liu: Properties of Enhanced Hypercube Networks, Journal of Systems Science and information, No. 3(2006), pp.251-256.

Google Scholar

[8] S.Y. Hsieh, G.H. Ho: Fault-free Hamiltonian cycles in faulty arrangement graphs, IEEE Trans. Parallel Distri. Syst. , Vol. 10(1999), pp.223-237.

DOI: 10.1109/71.755822

Google Scholar

[9] J.M. Xu, in: Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht/Boston/London, (2001).

Google Scholar

[10] S.A. Choudum, V. Sunitha: Augmented cubes, Networks, Vol. 40, No. 2(2002), pp.71-84.

DOI: 10.1002/net.10033

Google Scholar