Effect of Surfactants on the Morphologies of ZnO Nanostructures Synthesized by Hydrothermal Method and its Gas Sensitivity to Formaldehyde

Article Preview

Abstract:

Based on the principle of the higher surface-to-volume ratios, the higher formaldehyde gas sensitivity, different morphologies’s ZnO nanostructures have been synthesized by hydrother- mal method using different surfactants including polyvinyl alcohol (PVA), cetyltrimethyl ammon- ium bromide (CTAB), sodium tripolyp hosphate (STPP) and citric acid(CA). The crystal structur- es and morphologies were characterized by XRD and FESEM. The results show that different morphologies’s ZnO nanostructures were induced on the surface of alumina substrate, and the surfactants had an important effect on the morphologies of ZnO nanostructures and then affected the formaldehyde gas sensitivity. The ZnO nanorods with diameters of 100-500 nm and lengths of 200-900nm were obtained using PVA surfactant. The ZnO nanosheets with thickness of about 10nm were obtained using CTAB surfactant. The ZnO nanodisks with two layers and thickness of 5-10nm were obtained using STPP surfactant. The ZnO microspheres composed of thin flakes with thickness of about 10 nm were obtained using CA surfactant. The growth mechanisms of different morphologies’s ZnO nanostructures using different surfactants were given in detail. In addition, the formaldehyde gas sensitivities of different morphologies’s ZnO nanostructures were measured and showed the higher formaldehyde gas sensitivity compared with nano-ZnO without surfactant.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

628-633

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Zhang, H. Chen, J. Zhong, Y. Chen and Y. Lu, in: Proceedings of the 2006 IEEE International Frequency Control Symposium and Exposition, edited by Institute of Electrical and Electronics Engineers ( IEEE, 2006 ), Vol. 2, pp.545-549.

Google Scholar

[2] A. Akyol, H. C. Yatmaz and M. Bayramoglu: Appl. Catal. B: Environ. Vol. 54 (2004), p.19.

Google Scholar

[3] B. Baruwati, D. K. Kumar and S. V. Manorama : Sens. Actuators B, Vol. 119 (2006), p.676.

Google Scholar

[4] K. Keis, E. Magnusson, H. Lindstrom, S. E. Lindquist and A. Hagfeldt : J. Photochem. Photobiol., A, Vol. 148 (2002), p.57.

Google Scholar

[5] S. Singh, P. Thiyagarajan, K. M. Kant, D. Anita, S. Thirupathiah, N. Rama, B. Tiwari, M. Kottaisamy and M. R. Rao : J. Phys. D: Appl. Phys. Vol. 40 (2007), p.6312.

DOI: 10.1088/0022-3727/40/20/s15

Google Scholar

[6] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang: Adv. Mater. Vol. 13 (2001), p.113.

Google Scholar

[7] Z. W. Pan, Z. R. Dai and Z. L. Wang: Science, Vol. 291 (2001), p. (1947).

Google Scholar

[8] J. Y. Li, X. L. Chen, H. Li, M. He and Z. Y. Qiao: J. Cryst. Growth, Vol. 233 (2001), p.5.

Google Scholar

[9] Y. Tseng, C. Huang, H. Cheng, I. Lin, K. Liu and I. Chen: Adv. Funct. Mater. Vol. 13 (2003), p.811.

Google Scholar

[10] M. S. Kumar, T. Y. Kim, J. Y. Kim, E. K. Suh and K. S. Nahm: Phys. Stat. Sol. Vol. 1 (2004), p.2554.

Google Scholar

[11] L. Vayssieres: Adv. Mater. Vol. 15 (2003), p.464.

Google Scholar

[12] T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido and N. Sakagami: J. Cryst. Growth, Vol. 214 (2000), p.72.

Google Scholar

[13] D. W. Bahnemann, C. Kormann and M. R. Hoffmann: J. Phys. Chem. Vol. 91 (1987), p.3789.

Google Scholar

[14] J. Jie, G. Wang, Y. Chen, X. H. Han, Q. Wang and B. Xu: Appl. Phys. Lett. Vol. 86 (2005), 031909.

Google Scholar

[15] K. J. Huang, L. Yan and C. S. Xie: Mater. Rev. Vol. 24 (2010), p.7 (in Chinese).

Google Scholar

[16] Z. Y. Wang, B. B. Huang, X. Y. Qin, X. Y. Zhang, P. Wang, J. Y. Wei, J. Zhan,X. Y. Jing, H. X. Liu, Z. H. Xu, H. F. Cheng, X. N. Wang and Z. K. Zheng: Mater. Lett. Vol. 63 (2009), p.130.

Google Scholar

[17] J. Q. Xu, Y. Zhang, Y. P. Chen, Q. Xiang, Q. Y. Pan and L.Y. Shi; Mater. Sci. Eng. B, Vol. 150 (2005), p.55.

Google Scholar

[18] P. Rai, S. K. Tripathy, N. H. Park, K. Joong, I. H. Lee and Y. T. Yu: J. Mater. Sci.: Mater. Electron. Vol. 20 (2009), p.967.

Google Scholar

[19] F. Li, L. Hu, Z. Li and X.T. Huang: J. Alloy. Compd. Vol. 465 (2008), p.14.

Google Scholar

[20] H. Zhang, D. R. Yang, Y. J. Ji, X. Y. Ma, J. Xu and D. L. Que: J. Phys. Chem. B, Vol. 108 (2004), p.3955.

Google Scholar

[21] Y. X. Wang, X. Y. Fan and J. Sun: Mater. Lett. Vol. 63 (2009), p.350.

Google Scholar

[22] Z. Z. Shao, X. A. Zhang, X. F. Wang and S. L. Chang: Spectrosc. Spectral Anal. Vol. 30 (2010), p.1257 (in Chinese).

Google Scholar

[23] W. Y. Deng, Z. B. Zhao, L. Shen and J. S. Qiu: Funct. Mater. Vol. 38 (2007), p.1559 (in Chinese).

Google Scholar

[24] Q. Zhou, Z. S. Zhang and H. Y. Li: Chin. J. Inorg. Chem. Vol. 22 (2006), p.1675 (in Chinese).

Google Scholar

[25] A. Bera and D. Basak: Appl. Mater. interfaces, Vol. 1 (2009), p. (2066).

Google Scholar

[26] S. Cho, H. Jeong, D. -H. Park, S. –H. Jung, H. –J. Kim and K. -H. Lee: Cryst. Eng. Comm. Vol. 12 (2010), p.968.

Google Scholar

[27] D. Krishan and T. Pradeep: J. Cryst. Growth, Vol. 311(2009), p.3889.

Google Scholar

[28] H. H. Wang and C. S. Xie: J. Cryst. Growth, Vol. 291 (2006), p.187.

Google Scholar

[29] N. Han, Y. Tian, X. Wu and Y. Chen: Sens. Actuators B, Vol. 138 (2009), p.228.

Google Scholar

[30] P. Lv, Z. A. Tang, J. Yu, F. T. Zhang, G. F. Wei, Z. X. Huang and Y. Hu: Actuators B, Vol. 132 (2008), p.74.

Google Scholar