[1]
Zhou jing, Li Suqin, Study of the effect of the new complex flocculant on the advanced treatment of wastewater from coking plants. Industrial Water Treatment, 28. 2008: 35-38.
Google Scholar
[2]
C. Su, R.W. Puls, Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate, Environ. Sci. Technol. 38 (2004) 2715–2720.
DOI: 10.1021/es034650p
Google Scholar
[3]
P. Westerhoff, Reduction of nitrate, bromate and chlorate by zero-valent iron (Fe0), J. Environ. Eng. ASCE 129 (2003) 10–16.
DOI: 10.1061/(asce)0733-9372(2003)129:1(10)
Google Scholar
[4]
C.P. Huang, H.W. Wang, P.C. Chiu, Nitrate reduction by metallic iron, Water Res. 32 (1998) 2257–2264.
DOI: 10.1016/s0043-1354(97)00464-8
Google Scholar
[5]
F. Cheng, R. Muftikian, Q. Fernando, N. Korte, Reduction of nitrate to ammonia by zero-valent iron, Chemosphere 35 (1997) 2689–2695.
DOI: 10.1016/s0045-6535(97)00275-0
Google Scholar
[6]
G.C. Yang, H.L. Lee, Chemical reduction of nitrate by nanosized iron: kinetics and pathways, Water Res. 39 (2005) 884–894.
DOI: 10.1016/j.watres.2004.11.030
Google Scholar
[7]
S. Choe, Y.Y. Chang, K.Y. Hwang, J. Khim, Kinetics of reductive denitrification by nanoscale zero-valent iron, Chemosphere 41 (2000) 1307–1311.
DOI: 10.1016/s0045-6535(99)00506-8
Google Scholar
[8]
P. Westerhoff, J. James, Nitrate removal in zero-valent iron packed columns, Water Res. 37 (2003) 1818–1830.
DOI: 10.1016/s0043-1354(02)00539-0
Google Scholar
[9]
Se Chang Ahn, Seok-Young Oh, Daniel K. Cha. Enhanced reduction of nitrate by zero-valent iron at elevated temperatures. Journal of Hazardous Materials 156 (2008) 17–22.
DOI: 10.1016/j.jhazmat.2007.11.104
Google Scholar
[10]
A.H. Wolfe, J.A. Patz, Reactive nitrogen and human health: acute and long-term implications, Ambio 31 (2002) 120–125.
DOI: 10.1579/0044-7447-31.2.120
Google Scholar
[11]
US Environmental Protection Agency, Drinking water standards and health advisories, US Environmental Protection Agency, Office of Water (2000) 822-B-00-001.
DOI: 10.1017/cbo9780511805387.034
Google Scholar
[12]
Yao-Tung Lin, Chih-HuangWeng, Fang-Ying Chen. Effective removal of AB24 dye by nano/micro-size zero-valent iron. Separation and Purification Technology 64 (2008) 26–30.
DOI: 10.1016/j.seppur.2008.08.012
Google Scholar
[13]
Manish Kumar, Saswati Chakraborty. Chemical denitrification of water by zero-valent magnesium powder. Journal of Hazardous Materials B135 (2006) 112–121.
DOI: 10.1016/j.jhazmat.2005.11.031
Google Scholar
[14]
Kai-Sung Wang, Chiou-LiangLin, Ming-ChiWeid, et al. Effects of dissolved oxygen on dye removal by zero-valent iron. Journal of Hazardous Materials 1(2010): 1-10.
Google Scholar
[15]
C.E. Noradoun I.E. Cheng, EDTA degradation induced by oxygen activation in a zero-valent iron/air/water system, Environ. Sci. Technol. 39(2006)7158–7163.
DOI: 10.1021/es050137v
Google Scholar
[16]
J.D. Englehardt D.E. Meeroff,L. Echegoyen,Y. Deng,F. Raymo,T. Shibata, Oxidation of a queous EDTA and associated organics and coprecipitation of in organics by ambientiron-mediated aeration, Environ. Sci. Technol. 41(2007)270–276.
DOI: 10.1021/es061605j
Google Scholar
[17]
.H. Joo A.J. Feitz T.D. Waite, Oxidative degradation of the carbothioateher- bicide, molinate, using nanoscale zero-valentiron, Environ. Sci. Technol. 38 (2004) 2242–2247.
DOI: 10.1021/es035157g
Google Scholar
[18]
A.J. Feitz S.H. Joo,J. Guan,Q. Sun D.L. Sedlak T.D. Waite, Oxidative transformation of contaminants using colloidal zero-valent iron, ColloidSurf. A265(2005) 88–94.
DOI: 10.1016/j.colsurfa.2005.01.038
Google Scholar