Microstructure and Electrical Properties of Nd2O3-Doped TiO2-Ta2O5-Based Capacitor-Varistor Ceramics

Article Preview

Abstract:

A low-voltage TiO2 capacitor-varistor ceramics doped with Ta2O5 and Nd2O3 was systematically researched. The effect of Nd2O3 on the microstructure, nonlinear electrical properties, and dielectric properties of TiO2-based ceramics was investigated. It was found that an optimal doping composition of 99.20 mol% TiO2-0.10 mol%Ta2O5-0.7 mol% Nd2O3 was obtained with low breakdown voltage of 8.5 v/mm, high nonlinear constant of 4.0, ultrahigh electrical permittivity of 1.07× 105 and low tanδ of 0.39. In view of these electrical characteristics, the ceramics of 99.20 mol% TiO2-0.10 mol%Ta2O5-0.7 mol% Nd2O3 is a viable candidate for capacitor-varistor functional devices. The theory of defects in the crystal lattice was introduced to explain the nonlinear electrical behavior of the Nd2O3-doped TiO2-based varistor ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

348-352

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. R. Clarke: J. Am. Ceram. Soc. Vol. 82 (1999), p.485.

Google Scholar

[2] T.K. Gupta: J. Am. Ceram. Soc. Vol. 73 (1990), p.1817.

Google Scholar

[3] S. H. Luo, Z. L. Tang, J. Y. Li and Z. T. Zhang: Ceram. Int. Vol. 34 (2008), P. 1345.

Google Scholar

[4] M. F. Yan, W. W. Rhodes: Appl. Phys. Lett. Vol. 40 (1982), p.536.

Google Scholar

[5] S. C. Navale, A. Vadivel Murugan and V. Ravi: Ceram. Int. Vol. 33 (2007), P. 301.

Google Scholar

[6] J. Y. Li, S. H. Luo, W. H. Yao and Z. T. Zhang: Mater. Lett. Vol. 57 (2003), p.3748.

Google Scholar

[7] A. B. Gaikwad, S. C. Navale and V. Ravi: Mater. Sci. Eng. B Vol. 123 (2005), p.50.

Google Scholar

[8] W. B. Su, J.F. Wang, H.C. Chen, X. S. Wang and C. P. Li: Mater. Sci. Eng. B Vol. 99 (2003), p.461.

Google Scholar

[9] J. Mi, Z. L. Tang, S. H. Luo and Z. T. Zhang: Key Eng. Mater. Vol. 280(2005), p.280.

Google Scholar

[10] C. P. Li, J. F. Wang, H. C. Chen, W. B. Su and D. X. Zhuang: Mater. Sci. Eng. B Vol. 85 (2001), p.6.

Google Scholar

[11] J. F. Wang: Chin. Phys. Lett. Vol. 17 (2000), p.530.

Google Scholar

[12] L. M. Lionel and H. R. Philipp: Ceram. Bull. Vol. 65 (1986), p.639.

Google Scholar

[13] V. Makarov and M. Trontelj: J. Mater. Sci. Lett. Vol. 13 (1994), p.937.

Google Scholar

[14] W.Y. Wang, D.F. Zhang, T. Xu, X.F. Li and T. Zhou: J. Alloys Compd. Vol. 335 (2002), p.210.

Google Scholar

[15] T. K. Gupta, W. G. Carlson: J. Mater. Sci. Vol. 20 (1985), p.348.

Google Scholar

[16] C.P. Li, J.F. Wang, X. S. Wang, H.C. Chen and W.B. Su: Mater. Chem. Phys. Vol. 74 (2002), p.187.

Google Scholar