Ab Initio Study on Ta:SnO2

Article Preview

Abstract:

The structural, electronic and optical properties of a tantalum doped rutile-phased stannic oxide were investigated by ab initio calculations. The Ta dopant doesn’t change the lattice symmetry of rutile phase, but brings about a smaller volume expansion comparing with Sb:SnO2, a increase in thermal stability, a semiconductor-metal transition in electronic structure and a red shift in the optical spectrum. The intra-band excitation caused by Ta dopant leads to to a remarkable enhancement of optical peaks in the infrared region, while the stability of optical spectrum in the visible light region supports the preservation of high visible transparency of Ta:SnO2 with dopant concentration as high as 4.17 at.%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

574-578

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.S. Ginley, C. Bright: Mater. Res. Soc. Bull. Vol. 25 (2000) , p.15.

Google Scholar

[2] Minami: Semicond. Sci. Technol. Vol. 20 (2005) , p. S35.

Google Scholar

[3] H. Toyosaki, M. Kawasaki and Y. Tokura: Appl. Phys. Lett. Vol. 93 (2008) , p.132109.

Google Scholar

[4] S. Nakao, N. Yamada, T. Hitosugi, et al: Thin Solid Films, Vol. 518 (2010) , p.3093.

Google Scholar

[5] Y.W. Kim, S.W. Lee, H. Chen: Thin Solid Films, Vol. 405 (2002) , p.256.

Google Scholar

[6] M.D. Segall, P.L. Lindan, M.J. Probert, et al: J. Phys. Condens. Matter Vol. 14 (2002) , p.2717.

Google Scholar

[7] J.P. Perdew, Y. Wang: Phys. Rev. B Vol. 45 (1992) , p.13244.

Google Scholar

[8] D. Vanderbilt: Phys. Rev. B Vol. 41 (1990) , p.7892.

Google Scholar

[9] N. Troullier, J.L. Martins: Phys. Rev. B Vol. 43 (1991) , p. (1993).

Google Scholar

[10] J.S. Lin, A. Qteish, M.C. Payne, et al: Phys. Rev. B Vol. 47 (1993) , p.4174.

Google Scholar

[11] D.L. Zhang, L. Tao, Z.B. Deng, et al. Mater: Chem. Phys Vol. 100 (2006) , p.275.

Google Scholar

[12] G.K.H. Kim, S.W. Lee, D.W. Shin, et al: J. Am. Ceram. Soc Vol. 77 (1994) , p.915.

Google Scholar

[13] C.N. Rao and G.V.S. Rao: Transition metal oxides (National standard reference data system NSRDS-NBS49, Washington 1964).

Google Scholar

[14] G.Q. Qin, D.C. Li, Z.W. Chen, et al: Comput. Mater. Sci. Vol. 46 (2009) , p.418.

Google Scholar

[15] G.Q. Qin, D.C. Li, Z.J. Feng, et al: Thin Solid Films Vol. 517 (2009) , p.3345.

Google Scholar

[16] A.K. Singh, A. Janotti, M. Scheffler, et al: Phys. Rev. Lett. Vol. 101 (2008) , p.055502.

Google Scholar

[17] D.R. Lide: CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton 2005).

Google Scholar

[18] H. Kawazoe, M. Yasukawa, H. Hyoda, et al: Nature Vol. 389 (1997) , p.30.

Google Scholar

[19] R.G. Egdell, W.R. Flavell, P. Tavener: J. Solid State Chem. Vol. 51 (1984) , p.345.

Google Scholar

[20] P.A. Cox, R.G. Egdell, C. Harding, et al: Surf. Sci. Vol. 123 (1982) , p.179.

Google Scholar

[21] J.A. Majewski, S. Birner, A. Trellakis, et al: Phys. Status Solidi C Vol. 1(2003) , p. (2004).

Google Scholar

[22] F. Yakuphanoglu: J. Alloys Compd. Vol. 470 (2009) , p.55.

Google Scholar

[23] V. Stambouli, A. Zebda, E. Appert, et al: Electrochim. Acta Vol. 51 (2006) , p.5206.

Google Scholar

[24] K.F. Berggren, B.E. Sernelius: Phys. Rev. B Vol. 24 (1981) , p. (1971).

Google Scholar

[25] J.L. Jacquemin, C. Raisin, S.R. Kandare: J. Phys. C: Solid State Phys. Vol. 9 (1976) , p.593.

Google Scholar

[26] Z. Nabi, A. Kellou, S.M. Cabih, et al: Mater. Sci. Eng. B Vol. 98 (2003) , p.104.

Google Scholar