Fabrication and Characterization of Al2O3/GdAlO3 Eutectic Ceramic In Situ Composite by Laser Zone Remelting

Article Preview

Abstract:

In situ composite of Al2O3/GdAlO3(GAP) ceramic eutectic prepared by directional solidification is an interesting candidate for the manufacture of turbine blades because of its excellent mechanical properties. In the present paper, directionally solidified Al2O3/GAP eutectic in situ composite ceramics are manufactured by the laser zone remelting technique to investigate the rapid solidification process. The laser power and scanning rate necessary to carry out the ceramic melt growth is determined. The characteristic microstructure is investigated by scanning electron microscopy (SEM), energy disperse spectroscopy (EDS) and X-ray diffraction (XRD). The as-solidified Al2O3/GAP eutectic presents an elongated colony structure consisting of only -Al2O3 and GAP phases with an oriented growth array. The eutectic spacing is strongly dependent on the laser scanning rate, rapidly decreasing to the sub-micron range for the samples grown at the highest rate. Besides, the formation condition and evolution of the particular microstructure of the composite during rapid solidification are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

773-776

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Hirano: J. Eur. Ceram. Soc. Vol. 25 (2005), p.1191.

Google Scholar

[2] V.S. Stubican and R.C. Bradt: Ann. Rev. Mater. Sci. Vol. 11 (1981), p.267.

Google Scholar

[3] R.I. Merino, J.I. Peña, A. Larrea, G.F. Fuente and V.M. Orera: Recent Res. Devel. Mat. Sci. Vol. 4 (2003), p.1.

Google Scholar

[4] J. Llorca and V.M. Orera: Prog. Mater. Sci. Vol. 51 (2006), p.711.

Google Scholar

[5] Y. Waku: Adv. Mater. Vol. 10 (1998), p.615.

Google Scholar

[6] R.I. Merino, J.I. Peña, V.M. Orera and G.F. de la Fuente: Solid State Ionics Vol. 100 (1997), p.313.

Google Scholar

[7] N. Nakagawa, H. Ohtsubo, Y. Waku and H. Yugami: J. Eur. Ceram. Soc. Vol. 25 (2005), p.1285.

Google Scholar

[8] J.H. Lee, A. Yoshikawa and T. Fukuda: J. Eur. Ceram. Soc. Vol. 25 (2005), p.1351.

Google Scholar

[9] Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu and Y. Kohtoku: Nature Vol. 389 (1997), p.49.

DOI: 10.1038/37937

Google Scholar

[10] E.R.M. Andreeta, M.R.B. Andreeta and A.C. Hernandes: J. Cryst. Growth Vol. 234 (2002), p.782.

Google Scholar

[11] G. Gouadec, P. Colomban, N. Piquet, M.F. Trichet and L. Mazerolles: J. Eur. Ceram. Soc. Vol. 25 (2005), p.1447.

Google Scholar

[12] A. Sayir and C. Farmer: Acta. Mater. Vol. 48 (2000), p.4691.

Google Scholar

[13] P.B. Oliete, J.I. Peña, A. Larrea, V.M. Orera, J. Llorca, J.Y. Pastor, A. Martin and J. Segurado: Adv. Mater. Vol. 19 (2007), p.2313.

DOI: 10.1002/adma.200602379

Google Scholar

[14] H.J. Su, J. Zhang, C.J. Cui, L. Liu and H.Z. Fu: J. Cryst. Growth Vol. 307 (2007), p.448.

Google Scholar

[15] H.J. Su, J. Zhang, L. Liu and H.Z. Fu: Comp. Sci. Tech. Vol. 69 (2009), p.2657.

Google Scholar

[16] R.I. Merino, J.I. Peña and V.M. Orera: J. Eur. Ceram. Soc. Vol. 30 (2010), p.147.

Google Scholar

[17] Y.H. Han, M. Nagata, N. Uekawa and K. Kakegawa: British Ceram. Trans. Vol. 103 (2004), p.219.

Google Scholar

[18] I.S. Medeiros, E.R.M. Andreeta and A.C. Hernandes: J. Mater. Sci. Vol. 42 (2007), p.3874.

Google Scholar

[19] C.M. Chen, L.T. Zhang and W.C. Zhou: J. Cryst. Growth Vol. 191 (1998), p.873.

Google Scholar

[20] H.J. Su, J. Zhang, Y.F. Deng, L. Liu and H.Z. Fu: Scripta Mater. Vol. 60 (2009), p.362.

Google Scholar