[1]
Taher M.A. Influence of thermally treated phosphogypsum on the properties of Portland slag cement. Resources Conservation and Recycling. 2007, 52, 28–38.
DOI: 10.1016/j.resconrec.2007.01.008
Google Scholar
[2]
Papastefanou C.; Stoulos S. Ioannidou A. The application of phosphogypsum in agriculture and the radiological impact. J. Environ. Radioact. 2006, 89, 188-198.
DOI: 10.1016/j.jenvrad.2006.05.005
Google Scholar
[3]
Reijnders L. Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: a revies. Build. Environ. 2007, 42, 1036-1042.
DOI: 10.1016/j.buildenv.2005.09.016
Google Scholar
[4]
Samia Azabou; Tahar Mechichi; Sami Sayadi. Sulfate reduction from phosphogypsum using a mixed culture of sulfate-reducing bacteria, International Biodeterioration & Bildegradation. 2005, 56, 236-242.
DOI: 10.1016/j.ibiod.2005.09.003
Google Scholar
[5]
Nurhayat Degirmenci. The using of waste phosphogypsum and natural gypsum in adobe stabilization. Construction and Building Materials. 2008, 22, 1220-1224.
DOI: 10.1016/j.conbuildmat.2007.01.027
Google Scholar
[6]
Zhang Qian; Liu Shaowen; Wu Yuanxin. Thermodynamic analysis of the new process for sulfuric acid production from phosphogypsum. Chemical Engineering (chinese). 2007, 3572-3574.
Google Scholar
[7]
Ma LP; Ning P; Zheng SC. Reaction mechanism and kinetic analysis of the decomposition of phosphogypsum via a solid-state reaction. Industrial & Engineering Chemistry Research. 2010, 49(8), 3597-3602.
DOI: 10.1021/ie901950y
Google Scholar
[8]
Atanasova. Lubka. Energy analysis of the process of thermal decomposition of phosphogypsum to lime and sulfur dioxide. International Journal of Thermodynamics. 2002, 5, 119-126.
Google Scholar
[9]
Van der Merwea E.M.; Strydoma C.A.; Potgieter J.H. Thermogravimetric analysis of the reaction between carbon and CaSO4•2H2O, gypsum and phosphogypsum in an inert atmosphere, Thermochimica Acta. 1999, 340-341, 431-437.
DOI: 10.1016/s0040-6031(99)00287-7
Google Scholar
[10]
Mariana Moreira Cavalcanti Cantu; Vanusa Maria Feliciano Jacomino. Microstructure analyses of phosphogypsum generated by Brazilian fertilizer industries, Materials Characterization. 2008, 59, 365-373.
DOI: 10.1016/j.matchar.2007.02.001
Google Scholar
[11]
Mohammad M; Smadi Rami; Haddad H.; Ahmad M. Potential use of phosphogypwum in concrete. Cement and Concrete Research. 1999, 29, 1419-1425.
DOI: 10.1016/s0008-8846(99)00107-6
Google Scholar
[12]
Manjit Singh; Mridul Garg. Making of anhydrite cement from waste gypsum. Cement and Concrete Research. 2000, 30, 571-577.
DOI: 10.1016/s0008-8846(00)00209-x
Google Scholar
[13]
Manjit Singh. Treating waste phosphogypsum for cement and plaster manufacture. Cement and Concrete Research. 2002, 32, 1033-1038.
DOI: 10.1016/s0008-8846(02)00723-8
Google Scholar
[14]
Pradip K. Mandal; Tanuj K. Mandal. Anion water in gypsum (CaSO4·2H2O) and hemihydrate (CaSO4·1/2H2O). Cement and Concrete Research. 2002, 32, 313-316.
DOI: 10.1016/s0008-8846(01)00675-5
Google Scholar
[15]
Masamoto Tafu; Tetsuji Chohji,. Reaction between calcium phosphate and fluoride in phosphogypwum. Journal of the European Ceramic Society. 2006, 26, 767-770.
DOI: 10.1016/j.jeurceramsoc.2005.06.031
Google Scholar
[16]
Kelly A.; Rusch; Tingzong Guo; Roger K. Seals. Stabilization of phosphogypsum using class C fly ash and lime: assessment of the potential for marine applications. Journal of Hazardous Materials. 2002, B93, 167-186.
DOI: 10.1016/s0304-3894(02)00009-2
Google Scholar
[17]
Samir I.; Abu-Eishah; Ali A.; Bani-Kananeh; Mamdouh A. K2SO4 production via the double decomposition reaction of KCl and phosphogypsum. Chemical Engineering Journal. 2000, 76, 197-207.
DOI: 10.1016/s1385-8947(99)00158-8
Google Scholar