Electromagnetic Properties of Silica-Coated Planar Anisotropy Carbonyl-Iron Particles in Quasimicrowave Band

Article Preview

Abstract:

For the sake of thinner electromagnetic wave absorbers used in quasimicrowave band, planar anisotropy carbonyl-iron (PACI) coated with amorphous SiO2 particles as absorber and paraffin as matrix were prepared. The complex permeability, complex permittivity and microwave absorption properties were investigated in the frequency range of 0.1-18 GHz. Both the real parts of permeability and permittivity are increased with the increasing of PACI/SiO2 particles volume concentrations. The minimum reflection loss shifts to the low frequency region with increase in PACI/SiO2 particles volume concentrations. The decrease of matching frequency could be well explained by the increasing of and . The PACI/SiO2 core-shell material exhibits great potential in application absorbers in quasimicrowave frequency range.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

962-967

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. H. Liu, T. Y. Ma, H. Tong, W. Luo and M. Yan: J. Magn. Magn. Mater. Vol. 322(8), (2010), P. 940-944.

Google Scholar

[2] B. S. Zhang, Y. Feng, J. Xiong, Y. Yang and H. Lu: IEEE Trans. Magn. Vol. 42, (2006), P. 1778-1781.

Google Scholar

[3] D. Y. Kim, Y. C. Chung, T. W. Kang and H. C. Kim: IEEE Trans. Magn. Vol. 32 (2), (1996), P. 555-558.

Google Scholar

[4] F. S. Wen, W. L. Zuo, H. B. Yi, N. Wang, L. Qiao and F. S. Li: Physica B-Condensed Matter Vol. 404 (20), (2009), P. 3567-3570.

DOI: 10.1016/j.physb.2009.06.001

Google Scholar

[5] D. S. Xue, F. S. li, X. L. Fan and F. S. Wen: Chin. Phys. Lett Vol. 25, (2008), P. 4120-4123.

Google Scholar

[6] S. T. K. S. S. Kim J: Appl. Phys. Vol. 97, (2005), 10F905.

Google Scholar

[7] Y. Qing, W. Zhou, F. Luo and D. Zhu: J. Magn. Magn. Mater. Vol. 321 (1), (2009), P. 25-28.

Google Scholar

[8] X. G. Liu, D. Y. Geng, H. Meng, P. J. Shang and Z. D. Zhang: Appl. Phys. Lett. Vol. 92 (17), (2008), P. 173117-173113.

Google Scholar

[9] X. G. Liu, D. Y. Geng, H. Meng, W. B. Cui, F. Yang, D. J. Kang and Z. D. Zhang: Solid State Commun. Vol. 149 (1-2), (2009), P. 64-67.

Google Scholar

[10] J. Q. Wei, J. B. Wang, Q. F. Liu, L. Qiao, T. Wang and F. S. Li: J. Phys. D: Appl. Phys. Vol. 43 (11), (2010), P. 115001.

Google Scholar

[11] L. G. Yan, J. B. Wang, X. H. Han, Y. Ren, Q. F. Liu and F. S. Li: Nanotechnology Vol. 21 (9), (2010), P. 095708.

Google Scholar

[12] M. Kopcewicz, T. Lucinski, F. Stobiecki and G. Reiss, 1999 (unpublished).

Google Scholar

[13] X. J. Wei, J. T. Jiang, L. Zhen, Y. X. Gong, W. Z. Shao and C. Y. Xu: Mater. Lett. Vol. 64 (1), (2010), P. 57-60.

Google Scholar

[14] Y. B. Feng, T. Qiu, C. Y. Shen and X. Y. Li: IEEE Trans. Magn. Vol. 42 (3), (2006), P. 363-368.

Google Scholar

[15] A. Chevalier and M. Le Floc'h: J. Appl. Phys. Vol. 90 (7), (2001), P. 3462-3465.

Google Scholar

[16] C. Kittel: Physical Review Vol. 73 (2), (1948), P. 155.

Google Scholar

[17] W. T. Doyle and I. S. Jacobs: J. Appl. Phys. Vol. 71 (8), (1992), P. 3926-3936.

Google Scholar

[18] W. T. Doyle: J. Appl. Phys. Vol. 78 (10), (1995), P. 6165-6169.

Google Scholar

[19] J. R. Liu, M. Itoh and K. -i. Machida: Appl. Phys. Lett. Vol. 83 (19), (2003), P. 4017-4019.

Google Scholar

[20] J. R. Liu, M. Itoh and K. -i. Machida: Chem. Lett. Vol. 32 (4), (2003), P. 394-395.

Google Scholar

[21] Z. W. Li, L. Chen, Y. Wu and C. K. Ong: J. Appl. Phys. Vol. 96 (1), (2004), P. 534-539.

Google Scholar

[22] T. Inui, K. Konishi and K. Oda: IEEE Trans. Magn. Vol. 35 (5), (1999), P. 3148-3150.

Google Scholar

[23] Z. W. Li, G. Q. Lin and L. B. Kong: IEEE Trans. Magn. Vol. 44 (10), (2008), P. 2255-2261.

Google Scholar