Three TMCS Hydrophobic Modification Methods of New Building Insulation Material SiO2 Aerogels

Article Preview

Abstract:

Trimethylchlorosilane as a modifier and tetraethoxysilane, an acid catalyst, as raw material were modified hydrophobically through the copolymerization, surface derivative, and hierarchical hydrophobic modification methods. The modified material was prepared as hydrophobic SiO2 aerogels by constant pressure drying. Finally, thermal stability, pore structure, and chemical composition of SiO2 aerogels were analyzed using TG-DSC, FTIR, and BET. The results show that the hydrophobic property of SiO2 aerogels prepared using hierarchical hydrophobic modification and surface derivative methods have excelled characteristics, such as super-hydrophobicity. The aerogels prepared through the two different methods have a mesopore structure with mesopores of 2–70 nm; however, they have no micropore structure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 163-167)

Pages:

770-777

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Sung-Woo, Hwang, Tae-YounKim, Sang-Hoon Hyun. Microporous and Mesoporou Materials Vol. 130 (2010), pp.295-302.

Google Scholar

[2] H. El Rassy, P. Buisson, B. Bouali, A. Perrard, A. C. Pierre. Langmuir Vol. 19 (2003), pp.358-363.

DOI: 10.1021/la020637r

Google Scholar

[3] Askwar Hilonga, Jong-Kil Kim, Pradip B. Sarawade, Hee Taik Kim. Journal of Alloys and Compounds Vol. 487 (2009), pp.744-750.

Google Scholar

[4] Nicholas Leventis, Sudhir Mulik a, Xiaojiang Wang. Journal of Non-Crystalline Solids Vol. 354 (2008), pp.632-644.

Google Scholar

[5] H. Hoffmann, M. Meyer, I. Zeitler. Colloids and Surfaces A: Physicochem. Eng. Aspects Vol. 291 (2006), pp.117-127.

Google Scholar

[6] Hexin Zhang, Yingjie Qiao, Xiaohong Zhang, Shuangquan Fang. Journal of Non-Crystalline Solids Vol. 356 (2010), pp.879-883.

Google Scholar

[7] B. Himmel, H. Bürger, Th. Gerber, A. Olbertz. Journal of Non-Crystalline Solids Vol. 185 (1995), pp.56-66.

DOI: 10.1016/0022-3093(94)00668-7

Google Scholar

[8] J. Kuhn, F. Schwertfeger, M.C. Arduini-Schuster, J. Fricke, U. Schubert. Journal of Non-Crystalline Solids Vol. 186 (1995), pp.184-190.

DOI: 10.1016/0022-3093(95)00054-2

Google Scholar

[9] Daniela Carta, Anna Corrias, Gavin Mountjoy, Gabriele Navarra. Journal of Non-Crystalline Solids Vol. 353 (2007), pp.1785-1788.

DOI: 10.1016/j.jnoncrysol.2007.02.010

Google Scholar

[10] Jianjun Zhu, Jimin Xie, Xiaomeng Lü, Deli Jiang. Colloids and Surfaces A: Physicochemical and Engineering Aspects Vol. 342 (2009), pp.97-101.

Google Scholar

[11] Albertina Cabañ, Eduardo Enciso, M. Carmen Carbajo, Maria J. Torralvo, Concepción Pando, Juan Antonio R. Renuncio. Microporous and Mesoporous Materials Vol. 99 (2007), pp.23-29.

DOI: 10.1016/j.micromeso.2006.08.030

Google Scholar

[12] A. Parvathy Rao, A. Venkateswara Rao. Journal of Non-Crystalline Solids Vol. 354 (2008), pp.10-18.

DOI: 10.1016/j.jnoncrysol.2007.07.021

Google Scholar

[13] A. Venkateswara Rao, Sharad D. Bhagat. Solid State Sciences Vol. 6 (2004), pp.945-952.

Google Scholar

[14] Nagaraja D. Hegde, A. Venkateswara Rao. Applied Surface Science Vol. 253 (2006), pp.1566-1572.

Google Scholar

[16] A. Venkateswara Rao, Ravindra R. Kalesh. Science and Technology of Advanced Materials Vol. 4 (2003), pp.509-515.

Google Scholar