Effect of Vibrating Load on Grain Size Distribution of Crushed Rock Layer

Abstract:

Article Preview

For the construction of the proposed Qinghai-Tibet Express Highway in warm and ice-rich permafrost regions, it will be necessary to utilize the new technique of cooling the ground temperature by the coarsely crushed rock layer with a low fines content, instead of the traditional measures taken to increase simply thermal resistances, so as to protect from damage to highway embankment due to thaw settlement. The vibrating loads such as wheel load and tamping load may cause the breakage and abrasion of the matrix grains in the coarsely crushed rock layer. This results in decreasing of grain size and increasing of fines content in the crushed rock layer, thus decreasing the porosity of crushed rock layer. The smaller porosity of crushed rock layer may weaken the cooling effect of buoyancy-driven natural convection of the pore air in the crushed rock layer of the highway embankment, thus resulting in instability and failure of the embankment structure in permafrost regions. Under these conditions, the influence of vibrating load on the grain size distribution of the coarsely crushed rock layer has to be investigated experimentally. In the present study, laboratory experiments on the grain size variation of the coarsely crushed rock layer under vertically vibrating loads were carried out. The test results show that the vibrating load can cause the breakage and abrasion of the matrix grains in the coarsely crushed rock layer and the shapes of coarely crushed rock grain tend to be non-angular.

Info:

Periodical:

Advanced Materials Research (Volumes 168-170)

Edited by:

Lijuan Li

Pages:

663-668

DOI:

10.4028/www.scientific.net/AMR.168-170.663

Citation:

L. J. Yang et al., "Effect of Vibrating Load on Grain Size Distribution of Crushed Rock Layer", Advanced Materials Research, Vols. 168-170, pp. 663-668, 2011

Online since:

December 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.