Experimental Study on Solidification Behavior of Carbon Nanotube Nanofluid

Article Preview

Abstract:

Carbon nanotube (CNT) nanofluids, with three sizes of CNTs (L-MWNT-1030, L-MWNT-4060, L-MWNT-60100) and different mass concentration (MC) of surfactant, were prepared to investigate the effects of CNTs and surfactant on the solidification behavior of deionized water (DI water). The thermal responses of the samples were tested in a constant temperature trough. It’s found that the MC of the surfactant and the size of the CNTs influence the supercooling degree (SCD) and freezing time (FT). For the L-MWNT-1030, the CNT nanofluids had lower SCD and shorter beginning FT than the DI water. But when the MC of surfactant was 0.10 %, the finishing FT was equal to that of the DI water. For the L-MWNT-4060 and L-MWNT-60100 CNT nanofluids, the SCD and FT were comparable with those of the DI water. The unusual results imply that the mechanism of nucleation and stability of the CNT nanofluids also influence the solidification behavior.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 171-172)

Pages:

333-336

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. J. Baker and R. M. Rylatt. Appl. Energy vol. 85 (2008), p.475.

Google Scholar

[2] K. L. Zhou, J. A. Ferreira and S. W. H. de Haan. Int. J. Hydrogen Energy vol. 33 (2008), p.477.

Google Scholar

[3] S. U. S. Choi. ASME FED vol. 231/MD 66 (1995), p.99.

Google Scholar

[4] Y. H. Wang, J. K. Lee, C. H. Lee, Y. M. Jung, S. I. Cheong, C. G. Lee, B. C. Ku and S. P. Jang. Thermochimica Acta vol. 455 (2007), p.70.

DOI: 10.1016/j.tca.2006.11.036

Google Scholar

[5] X. Y. Liu. J. Chem. l Phys. vol. 112 (2000), p.9949.

Google Scholar

[6] S. Okawa, A. Saito, and R. Minami. Int. J. Refrig. vol. 24 (2001), p.108.

Google Scholar

[7] S. Berber, Y. -K. Kwon and D. Tománek. Phys. Rev. Lett. vol. 84 (2008), p.4613.

Google Scholar

[8] M. S. Liu, M. C. C. Lin, I. T. Huang and C. C. Wang. International Communications in Heat and Mass Transfer vol. 32 (2005), p.1202.

Google Scholar

[9] S. Jegadheeswaran and S. D. Pohekar. Renew. Sust. Energ. Revi. vol. 13 (2009), p.2225.

Google Scholar

[10] Y. L. Ding, H. Alias, D. S. Wen and R. A. Williams. International Journal of Heat and Mass Transfer vol. 49 (2006), p.240.

Google Scholar

[11] R. S. Ruoff and D. C. Lorents. Carbon, vol. 33(7) (1995), p.925.

Google Scholar

[12] Z. H. Liu, X. F. Yang, G. S. Wang and G. L. Guo. International Journal of Heat and Mass Transfer vol. 53 (2010), p. (1914).

Google Scholar

[13] J. Liu, A. G. Rinzler and H. J. Dai, et al. Science, vol. 280 (1998), p.1253.

Google Scholar

[14] M. J. O'Connell, S. M. Bachilo and C. B. Huffman, et al. Science, vol. 297 (2002), p.593.

Google Scholar

[15] X. F. Li, D. S. Zhu and X. J. Wang. J. Colloids Interf. Sci. vol. 310 (2) (2007), p.456.

Google Scholar

[16] D. S. Zhu, H. Li and X. J. Wang, et al. New Chemical Materials, vol. 35(9) (2007), p.45.

Google Scholar