A Multiple Classifier System for Functional Classification of G Protein-Coupled Receptors

Article Preview

Abstract:

G protein-coupled receptors (GPCRs) are the largest protein super family in the human body and play a significant role in the pharmaceutical industry as drug targets. Although the deep research in GPCRs is continuing to grow, the study on their structures and functions is limited, for it is difficult and complex for the researchers to obtain purified membrane protein structures of GPCRs. Currently, how to get the structures of GPCRs and how to analyze them are the most important issues in modern molecular biology and medicine. We adopted multi-classifier method to deal with the problem of functional classification of GPCRs. Based on class hierarchy, the different data sets for training the classifiers were formed, and the diversity and accuracy were considered together in selecting the classifier sets. The dynamic weighted fusion rule was used to combine the classifiers. Experimental results show the effectiveness of this multi-classifier system.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 171-172)

Pages:

403-407

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Re, G. Valentini: Proc. International Workshop on Machine Learning in Systems Biology (Ljubljana, Slovenia, September 5-6, 2009). Vol. 8, p.98.

Google Scholar

[2] W. S. Noble and A. Ben-Hur, in: Bioinformatics - From Genomes to Therapies, edited by T. Lengauer, volume 3 of Protein Function Prediction, chapter, 33, Wiley-VCH (2007).

Google Scholar

[3] I. Tetko, I. Rodchenkov, M. Walter, T. Rattei, and H. Mewes: Bioinformatics, Vol. 24 (2008) No. 5, p.621.

Google Scholar

[4] H. N. Chua, W. Sung, and L. Wong: Bioinformatics, Vol. 23 (2007) No. 24, p.3364.

Google Scholar

[5] M. Re, G. Valentini: Neurocomputing, Vol. 73 (2010) No. 7-9, p.1533.

Google Scholar

[6] U. Karaoz, T. M. Murali, S. Letovsky, Y. Zheng, C. Ding, C. R. Cantor, and S. Kasif: Proc. Natl Acad. Sci. USA, Vol. 101 (2004) No. 9, p.2888.

DOI: 10.1073/pnas.0307326101

Google Scholar

[7] M. desJardins, P. Karp, M. Krummenacker, T. Lee, and C. Ouzounis: Proc. International Conference on Intelligent Systems for Molecular Biology (California, USA, 1997), p.92.

Google Scholar

[8] G.R.G., Lanckriet, M. Deng, N. Cristianini, and M. I. Jordan: Proc. Pacific Symposium on Biocomputing (Hawaii, USA, Jan. 6-10, 2004), p.300.

Google Scholar

[9] F. Horn, J. Weare, M. W. Beukers, S. Hörsch, A. Bairoch, W. Chen, Ø. Edvardsen, F. Campagne, and G. Vriend: Nucleic Acids Research, Vol. 26 (1998), No. 1, p.275.

Google Scholar

[10] B. Bakır, U. Sezerman: Lecture Notes in Computer Science, Vol. 3907(2006), p.1.

Google Scholar

[11] M.N. Davies, A. Secker, A.A. Freitas, M. Mendao, J. Timmis, and D.R. Flower: Bioinformatics, Vol. 23(2007), No. 23, p.3113.

DOI: 10.1093/bioinformatics/btm506

Google Scholar

[12] M.N. Davies, D.E. Gloriam, A. Secker, A.A. Freitas, M. Mendao, J. Timmis, and D.R. Flower, Proteomics, Vol. 7 (2007), No. 16, p.2800.

DOI: 10.1002/pmic.200700093

Google Scholar

[13] M. Re, G. Valentini: Journal of Integrative Bioinformatics, Vol. 7(2010), No. 3, p.139.

Google Scholar

[14] A. Secker, M. N. Davies, A. A. Freitas, E. B. Clark, J. Timmis, and D. R. Flower: International Journal of Data Mining and Bioinformatics, Vol. 4 (2010) No. 2, p.191.

Google Scholar

[15] L. I. Kuncheva, C. J. Whitaker: Machine learning, Vol. 51(2003), No. 2, p.181.

Google Scholar

[16] M. Lapinsh, A. Gutcaits, P. Prusis, C. Post, T. Lundstedt, and E. S. J. Wikberg: Protein Science, Vol. 11 (2002) No. 4, p.795.

Google Scholar