Preparation and Characterization of La3+ Doped TiO2 Thin Films Derived by Innovative Ultrasonic-Sol-Gel Method

Article Preview

Abstract:

La3+ doped TiO2 films were prepared through innovative ultrasonic-sol-gel method. The cavitation effect of ultrasound could contribute to grain refinement and uniform dispersion. The composition, structure and performance of the obtained material were characterized by XRD, SEM, FT-IR and UV-vis. Our results indicate that La3+ doping could prohibit the phase transformation of TiO2 (i.e., from anatase to rutile) and increase phase-transition temperature and restrain grain growth. The crystalling phase composition of La3+ doped TiO2 films is anatase, and the particle size is from 6 to 17 nm. In addition, La3+ doping can bring the red shift of the optical absorption edge of TiO2, and the degree of red shift increases with the increase of La3+ doping amounts and decreases with the increase of temperature. Thin film thickness is found to be 70-80nm with a smooth surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-99

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.H. Zhang, H.X. Zhang and Y.X. Xu: J. Solid State Chem. Vol. 177 (2004), p.3490.

Google Scholar

[2] J.S. Song, D.Y. Lee, W.J. Lee and S.J. Kim: Met. Mater. Int. Vol. 8 (2002), p.103.

Google Scholar

[3] J. Arbiol, J. Cerdà and G. Dezanneau: J. Appl. Phys. Vol. 92 (2002), p.853.

Google Scholar

[4] S. Rajeshkumar, C. Suresh and A.K. Vasudevan: Mater. Lett. Vol. 38 (1999), p.161.

Google Scholar

[5] D. Vorkapic and T. Matscukas: J. Am. Ceram. Soc. Vol. 81 (1998), p.2815.

Google Scholar

[6] H. Zhang and J.F. Banfield: J. Mater. Res. Vol. 15 (2000), p.437.

Google Scholar

[7] U.G. Akpan and B.H. Hameed: Appl. Catal., A Vol. 375 (2010), p.1.

Google Scholar

[8] P.O. Larsson and A. Andersson: Appl. Catal., B Vol. 24 (2000), p.175.

Google Scholar

[9] K.T. Ranjit, I. Willner, S.H. Bossmann, et al.: Environ. Sci. Technol. Vol. 35 (2001), p.1544.

Google Scholar

[10] H. Dislich and E. Hussman: Thin Solid Films Vol. 77 (1981), p.129.

Google Scholar

[11] K.S. Suslick and G.J. Price: Annu. Rev. Mater. Sci. Vol. 29 (1999), p.295.

Google Scholar

[12] B. Neppolian, Q. Wang, H. Jung and H. Choi: Ultrason. Sonochem. Vol. 15 (2008), p.649.

Google Scholar

[13] W. Y Xu, M.B. Luo, L.B. Wei, Y.H. Liu and H.L. Lin: Adv. Mater. Res. Vol. 105-106 (2010), p.481.

Google Scholar

[14] E. Borgarello, J. Kiwi, E. Pelizzetti, et al. l: J. Am. Ceram. Soc. Vol. 104(1982), p.2996.

Google Scholar

[15] X. T. Gao and I. Wachs: Catal. Today Vol. 51 (1999), p.233.

Google Scholar