[1]
D. S. Bernstein, W. M. Haddad and C. N. Nett: Minimal Complexity Control Law Synthesis, Part 2: Problem Solution via Optimal Static Output Feedback, in Proc. 4th CDC, Pittsburgh, PA, (1989), p.2506.
DOI: 10.23919/acc.1989.4790609
Google Scholar
[2]
I. Yaesh, U. Shaked: Minimum entropy static feedback control with an H∞-norm performance bound, IEEE Trans. Autom. Control, Vol. 42 (1997), p.853.
DOI: 10.1109/9.587343
Google Scholar
[3]
T. Iwasaki, R. E. Skelton: All controllers for the general H∞ control problem: LMI existence conditions and state space formulas, Automatica, Vol. 30 (1994), p.1307.
DOI: 10.1016/0005-1098(94)90110-4
Google Scholar
[4]
T. Iwasaki, R. E. Skelton and J. C. Geromel: Linear quadratic suboptimal control with static output feedback, System Control Lett, Vol. 23 (1994), p.421.
DOI: 10.1016/0167-6911(94)90096-5
Google Scholar
[5]
A. Packard, J. C. Doyle: The complex structured singular value, Automatica, Vol. 29 (1993), p.71.
DOI: 10.1016/0005-1098(93)90175-s
Google Scholar
[6]
V. L. Syrmos, C. T. Abdallah and K. Grigoriadis: Static output feedback-a survey, Automatica, Vol. 33 (1997), p.125.
DOI: 10.1016/s0005-1098(96)00141-0
Google Scholar
[7]
A. Trofino-Neto, V. Kucera: Stabilization via static output feedback, IEEE Trans. Autom. Control, Vol. 38 (1993), p.764.
DOI: 10.1109/9.277243
Google Scholar
[8]
G. Garcia, B. Pradin and F. Zeng: Stabilization of discrete time linear systems by static output feedback, IEEE Trans. Autom. Control, Vol. 46 (2001), p. (1954).
DOI: 10.1109/9.975499
Google Scholar
[9]
J. C. Geremel, C. C. de Souza and R E Skelton: Static output feedback controllers: stability and convexity, IEEE Trans. Automat. Control, Vol. 43 (1998), p.120.
DOI: 10.1109/9.654912
Google Scholar
[10]
F. Brasch, Jr. J. Pearson: Pole assignment using dynamic compensators, IEEE Trans. Automat. Control, Vol. 15 (1970), p.34.
DOI: 10.1109/tac.1970.1099352
Google Scholar
[11]
E. J. Davison, S. G. Chow: An algorithm for the assignment of closed loop poles using output feedback in large multivariable systems, IEEE Trans. Automat. Control, Vol. 18 (1973), p.74.
DOI: 10.1109/tac.1973.1100212
Google Scholar
[12]
V. Syrmos, F. Lewis: Output feedback eigenstructure assignment using two Sylvester equations, IEEE Trans. Automat. Control, Vol. 38 (1993), p.495.
DOI: 10.1109/9.210155
Google Scholar
[13]
J. C. Geromel, P. L. D. Perez and R. Souza: Output feedback stabilisation of un-certain systems through a min/max problem, IFAC World Congress, (1993).
DOI: 10.1016/s1474-6670(17)48929-4
Google Scholar
[14]
C. A. R. Crusius, A. Trofino: Sufficient LMI conditions for output feedback control problems, IEEE Trans. Automat. Control, vol. 44 (1999), p.1053.
DOI: 10.1109/9.763227
Google Scholar
[15]
A. Fujimori: Optimization of static output feedback using substitutive LMI formulation, IEEE Trans. Auto. Control, vol. 46 (2004), p.995.
DOI: 10.1109/tac.2004.829633
Google Scholar
[16]
L. E. Ghaoui, F. Oustry and M. AitRami: A cone complementary linearization algorithm for static output feedback and related problems, IEEE Trans. Automat. Control, vol. 42 (1997), p.1171.
DOI: 10.1109/9.618250
Google Scholar
[17]
I. N. Kar: Design of static output feedback controller for uncertain systems, Automatica, Vol. 35 (1999), p.169.
DOI: 10.1016/s0005-1098(98)00170-8
Google Scholar
[18]
E. Prempain, I. Postlethwaite: Static output feedback stabilization with per-formance for a class of plants, System Control Lett, Vol. 43 (2001), p.159.
DOI: 10.1016/s0167-6911(01)00087-1
Google Scholar
[19]
Y. Y. Cao, J. Lam and Y. X. Sun: Static output feedback stabilization: an ILMI approach, Automatica, Vol. 34 (1998), p.1641.
DOI: 10.1016/s0005-1098(98)80021-6
Google Scholar
[20]
M. Green, D. J. N. Limebeer: Linear Robust Control. (Prentice-Hall, Englewood Cliffs, USA, 1995).
Google Scholar
[21]
L. Xie: Output feedback control of systems with parameter uncertainty, Int. J. Control, Vol. 63 (1996), p.741.
Google Scholar