LMI Formulation for Static Output Feedback Control of Linear Continuous System

Article Preview

Abstract:

In this paper, the static output feedback control of a class of continuous systems is considered. Thanks to the Reciprocal Projection Lemma, it is shown that the solution of the continuous system with static output feedback problem is conditioned by a set of linear matrix inequalities (LMIs), which are numerically tractable and free from any equality constraint. Furthermore, a convex optimization problem with LMI constraint is formulated to design the optimal guaranteed cost controller which minimizes the guaranteed cost of the closed-loop systems. Numerical examples are given to illustrate the effectiveness of the proposed methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

312-316

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. S. Bernstein, W. M. Haddad and C. N. Nett: Minimal Complexity Control Law Synthesis, Part 2: Problem Solution via Optimal Static Output Feedback, in Proc. 4th CDC, Pittsburgh, PA, (1989), p.2506.

DOI: 10.23919/acc.1989.4790609

Google Scholar

[2] I. Yaesh, U. Shaked: Minimum entropy static feedback control with an H∞-norm performance bound, IEEE Trans. Autom. Control, Vol. 42 (1997), p.853.

DOI: 10.1109/9.587343

Google Scholar

[3] T. Iwasaki, R. E. Skelton: All controllers for the general H∞ control problem: LMI existence conditions and state space formulas, Automatica, Vol. 30 (1994), p.1307.

DOI: 10.1016/0005-1098(94)90110-4

Google Scholar

[4] T. Iwasaki, R. E. Skelton and J. C. Geromel: Linear quadratic suboptimal control with static output feedback, System Control Lett, Vol. 23 (1994), p.421.

DOI: 10.1016/0167-6911(94)90096-5

Google Scholar

[5] A. Packard, J. C. Doyle: The complex structured singular value, Automatica, Vol. 29 (1993), p.71.

DOI: 10.1016/0005-1098(93)90175-s

Google Scholar

[6] V. L. Syrmos, C. T. Abdallah and K. Grigoriadis: Static output feedback-a survey, Automatica, Vol. 33 (1997), p.125.

DOI: 10.1016/s0005-1098(96)00141-0

Google Scholar

[7] A. Trofino-Neto, V. Kucera: Stabilization via static output feedback, IEEE Trans. Autom. Control, Vol. 38 (1993), p.764.

DOI: 10.1109/9.277243

Google Scholar

[8] G. Garcia, B. Pradin and F. Zeng: Stabilization of discrete time linear systems by static output feedback, IEEE Trans. Autom. Control, Vol. 46 (2001), p. (1954).

DOI: 10.1109/9.975499

Google Scholar

[9] J. C. Geremel, C. C. de Souza and R E Skelton: Static output feedback controllers: stability and convexity, IEEE Trans. Automat. Control, Vol. 43 (1998), p.120.

DOI: 10.1109/9.654912

Google Scholar

[10] F. Brasch, Jr. J. Pearson: Pole assignment using dynamic compensators, IEEE Trans. Automat. Control, Vol. 15 (1970), p.34.

DOI: 10.1109/tac.1970.1099352

Google Scholar

[11] E. J. Davison, S. G. Chow: An algorithm for the assignment of closed loop poles using output feedback in large multivariable systems, IEEE Trans. Automat. Control, Vol. 18 (1973), p.74.

DOI: 10.1109/tac.1973.1100212

Google Scholar

[12] V. Syrmos, F. Lewis: Output feedback eigenstructure assignment using two Sylvester equations, IEEE Trans. Automat. Control, Vol. 38 (1993), p.495.

DOI: 10.1109/9.210155

Google Scholar

[13] J. C. Geromel, P. L. D. Perez and R. Souza: Output feedback stabilisation of un-certain systems through a min/max problem, IFAC World Congress, (1993).

DOI: 10.1016/s1474-6670(17)48929-4

Google Scholar

[14] C. A. R. Crusius, A. Trofino: Sufficient LMI conditions for output feedback control problems, IEEE Trans. Automat. Control, vol. 44 (1999), p.1053.

DOI: 10.1109/9.763227

Google Scholar

[15] A. Fujimori: Optimization of static output feedback using substitutive LMI formulation, IEEE Trans. Auto. Control, vol. 46 (2004), p.995.

DOI: 10.1109/tac.2004.829633

Google Scholar

[16] L. E. Ghaoui, F. Oustry and M. AitRami: A cone complementary linearization algorithm for static output feedback and related problems, IEEE Trans. Automat. Control, vol. 42 (1997), p.1171.

DOI: 10.1109/9.618250

Google Scholar

[17] I. N. Kar: Design of static output feedback controller for uncertain systems, Automatica, Vol. 35 (1999), p.169.

DOI: 10.1016/s0005-1098(98)00170-8

Google Scholar

[18] E. Prempain, I. Postlethwaite: Static output feedback stabilization with per-formance for a class of plants, System Control Lett, Vol. 43 (2001), p.159.

DOI: 10.1016/s0167-6911(01)00087-1

Google Scholar

[19] Y. Y. Cao, J. Lam and Y. X. Sun: Static output feedback stabilization: an ILMI approach, Automatica, Vol. 34 (1998), p.1641.

DOI: 10.1016/s0005-1098(98)80021-6

Google Scholar

[20] M. Green, D. J. N. Limebeer: Linear Robust Control. (Prentice-Hall, Englewood Cliffs, USA, 1995).

Google Scholar

[21] L. Xie: Output feedback control of systems with parameter uncertainty, Int. J. Control, Vol. 63 (1996), p.741.

Google Scholar