Experimental Study on Dynamic Mechanical Behaviour of Concrete with High Temperature

Abstract:

Article Preview

An experimental system of high-temperature split Hopkinson pressure bar (SHPB) was developed by combination of the split Hopkinson pressure bar (SHPB) and microwave heating system, then tests of concrete whose temperature changed from room temperature to 650°С and impact velocity from 5m/s to 12m/s were completed. Based on the test results, the dynamic strength of concrete increases with increasing impact velocity whether with high temperature or room temperature, meanwhile the dynamic strength of concrete with high temperature has the strain rate effect, but the effect keeps decreasing with temperature increasing, even at temperature above 500°С , compressive strength will not have strain rate sensitive effect any longer when strain rate surpasses a certain value. In the meantime, the strain rate hardening effect is coupled with high temperature weakening effect, but the latter has greater influence.

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Edited by:

Jianmin Zeng, Taosen Li, Shaojian Ma, Zhengyi Jiang and Daoguo Yang

Pages:

1109-1113

DOI:

10.4028/www.scientific.net/AMR.194-196.1109

Citation:

B. Jia et al., "Experimental Study on Dynamic Mechanical Behaviour of Concrete with High Temperature", Advanced Materials Research, Vols. 194-196, pp. 1109-1113, 2011

Online since:

February 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.