Effects of Impact Angles on Erosion-Abrasion Properties of Hypereutectic Al-Mn Alloy Matrix Composite Reinforced with Al2O3 Particulates

Abstract:

Article Preview

Effects of different impact angles such as 45°and 90°on the erosion-abrasion properties of hypereutectic Al-Mn alloy and its composites reinforced with Al2O3 particulates were studied by rotating erosion-abrasion test, and the microstructure and the worn surfaces were analyzed. The results show that the as-cast Al-Mn alloy is composed of aluminium-manganese solid solution, MnAl6 and Al11Mn4 phase, while the δ-Al2O3 particles are included in the composites besides the aforementioned microstructures. With elongating the erosion time, the wear rates of the Al-Mn alloy and its composites increase at the impact angle of 90°, whereas they firstly increase and then decrease , and there is a maximum at 45°. The distortion wear caused by the normal stress is dominant at 90°, which lead to the erosion pits on the worn surface. However, the cutting wear by the shear stress is predominant at 45°, which result in the ploughs.

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Edited by:

Jianmin Zeng, Taosen Li, Shaojian Ma, Zhengyi Jiang and Daoguo Yang

Pages:

190-193

DOI:

10.4028/www.scientific.net/AMR.194-196.190

Citation:

B. Liu et al., "Effects of Impact Angles on Erosion-Abrasion Properties of Hypereutectic Al-Mn Alloy Matrix Composite Reinforced with Al2O3 Particulates", Advanced Materials Research, Vols. 194-196, pp. 190-193, 2011

Online since:

February 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.