Surface Characterisation of the Corundum-Route Lead Magnesium Niobate Ferroelectric Ceramics

Abstract:

Article Preview

Perovskite relaxor ferroelectric PMN ceramics, Pb (Mg1/3Nb2/3O3), have been fabricated using a two-stage process employing a corundum-type Mg4Nb2O9 as a key precursor. The 100% perovskite PMN ceramics was revealed by X-ray diffraction analysis. The SEM image of the PMN ceramic shows irregular shape PMN grains on the porous surface. The surface chemical composition of the PMN ceramics could be characterized by X-ray photoelectron microscopy technique. The XPS results indicate most of the elements consist of more than one chemical species. The important of XPS studies here can reveal small amount of species which could not detected by XRD.

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Edited by:

Jianmin Zeng, Taosen Li, Shaojian Ma, Zhengyi Jiang and Daoguo Yang

Pages:

2046-2049

DOI:

10.4028/www.scientific.net/AMR.194-196.2046

Citation:

L. Srisombat et al., "Surface Characterisation of the Corundum-Route Lead Magnesium Niobate Ferroelectric Ceramics", Advanced Materials Research, Vols. 194-196, pp. 2046-2049, 2011

Online since:

February 2011

Export:

Price:

$35.00

[1] A. J. Moulson and J. M. Herbert: Electroceramics: (Wiley, Chichester, 2003).

[2] G. H. Haertling: J. Am. Ceram. Soc. Vol. 82 (1999), p.797.

[3] E. F. Alberta and A. S. Bhalla: J. Phys. Chem. Solids Vol. 63 (2002), p.1759.

[4] E. Husson, L. Abello and A. Morell: Mater. Res. Vol 25(1990), p.539.

[5] S. Ananta and N.W. Thomas: J. Eur. Ceram. Soc. Vol. 19 (1999), p.2917.

[6] R. Yimnirun, S. Ananta and P. Laoratanakul: J. Eur. Ceram. Soc. Vol. 25 (2005), p.3235.

[7] S. M. Gupta, A. R. Kulkarni, M. Vedpathak and S. K. Kulkarni: Mater. Sci. Eng., B Vol. B39 (1996), p.34.

[8] R. Wongmaneerung, R. Yimnirun and S. Ananta: J. Alloys Compd. Vol. 477 (2009), p.805.

[9] S. Ananta: Mater. Lett. Vol. 58 (2004), p.2834.

[10] R. Wongmaneerung, T. Sarakonsri, R. Yimnirun and S. Ananta: Mater. Sci. Eng. B Vol. 132 (2006), p.292.

[11] L. Srisombat, O. Khamman, R. Yimnirun, S. Ananta and T.R. Lee: Chiang Mai J. Sci. Vol. 36 (2009), p.69.

[12] A. Molak, E. Talik, M. Kruczek, M. Paluch, A. Ratuszna and Z. Ujma: Mater. Sci. Eng., B Vol. 128 (2006), p.16.

[13] V.R. Mastelaro, P.N. Lisbao-Filho, P.P. Neves, W.H. Schreiner, P.A.P. Nascente and J.A. Eiras: J. Electron. Spectrosc. Relat. Phenom. Vol. 156-158 (2007), p.476.

[14] S. Bhaskar, S.B. Majunder and E.R. Katiyar: J. Am. Ceram. Soc. Vol. 87 (2004), p.384.

[15] L. Srisombat, O. Khamman, R. Yimmirun, S. Ananta and T.R. Lee: Key Eng. Mater. Vol. 421-422 (2010), p.415.

[16] P. Singh, B.J. Brandenburg, C.P. Sebastian, D. Kumar and O. Parkash: Mater. Res. Bull. Vol. 42 (2008), p. (2078).

[17] Q.N. Pham, C. Bohnke and O. Bohnke: Surf. Sci. Vol. 572 (2004), p.375.

[18] Z. Xia, Q. Li and M. Cheng: Cryst. Res. Technol. Vol. 42 (2007), p.511.

[19] C. R. Cho: Cryst. Res. Technol. Vol. 35 (2000), p.77.

[20] C. J. Lu, A.X. Kuang and G. Y. Huang: J. Appl. Phys. Vol. 80 (1996), p.202.

[21] Q. Xu, D. Huang, W. Chen, H. Wang, Bi Wang and R. Yuan: Appl. Surf. Sci. Vol. 228 (2004), p.110.

In order to see related information, you need to Login.