Surface Characterisation of the Corundum-Route Lead Magnesium Niobate Ferroelectric Ceramics

Article Preview

Abstract:

Perovskite relaxor ferroelectric PMN ceramics, Pb (Mg1/3Nb2/3O3), have been fabricated using a two-stage process employing a corundum-type Mg4Nb2O9 as a key precursor. The 100% perovskite PMN ceramics was revealed by X-ray diffraction analysis. The SEM image of the PMN ceramic shows irregular shape PMN grains on the porous surface. The surface chemical composition of the PMN ceramics could be characterized by X-ray photoelectron microscopy technique. The XPS results indicate most of the elements consist of more than one chemical species. The important of XPS studies here can reveal small amount of species which could not detected by XRD.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Pages:

2046-2049

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. J. Moulson and J. M. Herbert: Electroceramics: (Wiley, Chichester, 2003).

Google Scholar

[2] G. H. Haertling: J. Am. Ceram. Soc. Vol. 82 (1999), p.797.

Google Scholar

[3] E. F. Alberta and A. S. Bhalla: J. Phys. Chem. Solids Vol. 63 (2002), p.1759.

Google Scholar

[4] E. Husson, L. Abello and A. Morell: Mater. Res. Vol 25(1990), p.539.

Google Scholar

[5] S. Ananta and N.W. Thomas: J. Eur. Ceram. Soc. Vol. 19 (1999), p.2917.

Google Scholar

[6] R. Yimnirun, S. Ananta and P. Laoratanakul: J. Eur. Ceram. Soc. Vol. 25 (2005), p.3235.

Google Scholar

[7] S. M. Gupta, A. R. Kulkarni, M. Vedpathak and S. K. Kulkarni: Mater. Sci. Eng., B Vol. B39 (1996), p.34.

Google Scholar

[8] R. Wongmaneerung, R. Yimnirun and S. Ananta: J. Alloys Compd. Vol. 477 (2009), p.805.

Google Scholar

[9] S. Ananta: Mater. Lett. Vol. 58 (2004), p.2834.

Google Scholar

[10] R. Wongmaneerung, T. Sarakonsri, R. Yimnirun and S. Ananta: Mater. Sci. Eng. B Vol. 132 (2006), p.292.

Google Scholar

[11] L. Srisombat, O. Khamman, R. Yimnirun, S. Ananta and T.R. Lee: Chiang Mai J. Sci. Vol. 36 (2009), p.69.

Google Scholar

[12] A. Molak, E. Talik, M. Kruczek, M. Paluch, A. Ratuszna and Z. Ujma: Mater. Sci. Eng., B Vol. 128 (2006), p.16.

Google Scholar

[13] V.R. Mastelaro, P.N. Lisbao-Filho, P.P. Neves, W.H. Schreiner, P.A.P. Nascente and J.A. Eiras: J. Electron. Spectrosc. Relat. Phenom. Vol. 156-158 (2007), p.476.

Google Scholar

[14] S. Bhaskar, S.B. Majunder and E.R. Katiyar: J. Am. Ceram. Soc. Vol. 87 (2004), p.384.

Google Scholar

[15] L. Srisombat, O. Khamman, R. Yimmirun, S. Ananta and T.R. Lee: Key Eng. Mater. Vol. 421-422 (2010), p.415.

Google Scholar

[16] P. Singh, B.J. Brandenburg, C.P. Sebastian, D. Kumar and O. Parkash: Mater. Res. Bull. Vol. 42 (2008), p. (2078).

Google Scholar

[17] Q.N. Pham, C. Bohnke and O. Bohnke: Surf. Sci. Vol. 572 (2004), p.375.

Google Scholar

[18] Z. Xia, Q. Li and M. Cheng: Cryst. Res. Technol. Vol. 42 (2007), p.511.

Google Scholar

[19] C. R. Cho: Cryst. Res. Technol. Vol. 35 (2000), p.77.

Google Scholar

[20] C. J. Lu, A.X. Kuang and G. Y. Huang: J. Appl. Phys. Vol. 80 (1996), p.202.

Google Scholar

[21] Q. Xu, D. Huang, W. Chen, H. Wang, Bi Wang and R. Yuan: Appl. Surf. Sci. Vol. 228 (2004), p.110.

Google Scholar