Study on Clean Treatment of Urea-Formaldehyde Waste Using Fast Pyrolysis

Article Preview

Abstract:

A large amount of urea-formaldehyde (UF) resin waste is generated accompanied with discarded wood-based panels in China. In order to find out a safe and clean technology to recover these wastes, characterization of the nitrogen species released from fast pyrolysis of UF resin was investigated using PY-GC/MS.The results show that nitrogen atom trends to form nitrogen heterocyclic species rather than aliphatic species, especially at high temperature during UF fast pyrolysis. The number of produced species reaches its maximum when temperature was setto the range of 500-600 °C, the proper temperature range for wood fast pyrolysis. During UF resin fast pyrolysis, neither NO, NO2, N2O nor their precursors (HCN and HNCO) were observed. These substances were proven to be very harmful to the environment. Most produced nitrogen species havestrong antibacterial activity, andcan greatly enhance the high-valued utilization of bio-oil. Based on these, we concluded that fast pyrolysis is a promising technology to recover the UF resin waste in a safe and clean manner.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Pages:

2097-2104

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ministry of Environmental Protection of the P.R. China, National Catalogue of Hazardous Wastes, (2008).

Google Scholar

[2] State Forest Administration of P.R. China, National Forestry Statistics 2009 annual report, (2010).

Google Scholar

[3] D.S. Achilias, C. Roupakias, P. Megalokonomos, A.A. Lappas, E.V. Antonakou, Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP), J. Hazard. Mater. 149 (2007) 536-542.

DOI: 10.1016/j.jhazmat.2007.06.076

Google Scholar

[4] R. Aravindhan, J.R. Rao, B.U. Nair, Preparation and characterization of activated carbon from marine macro-algal biomass, J. Hazard. Mater. 162 (2009) 688-694.

DOI: 10.1016/j.jhazmat.2008.05.083

Google Scholar

[5] J. Ratte, F. Marias, J. Vaxelaire, P. Bernada, Mathematical modelling of slow pyrolysis of a particle of treated wood waste, J. Hazard. Mater. 170 (2009) 1023-1040.

DOI: 10.1016/j.jhazmat.2009.05.077

Google Scholar

[6] A.V. Bridgwater, G.V.C. Peacocke, Fast pyrolysis processes for biomass, Renew. Sust. Energ. Rev. 4 (2000) 1-73.

Google Scholar

[7] P. Girods, A. Dufour, Y. Rogaume, C. Rogaume, A. Zoulalian, Thermal removal of nitrogen species from wood waste containing urea formaldehyde and melamine formaldehyde resins, J. Hazard. Mater. 159 (2008) 210-221.

DOI: 10.1016/j.jhazmat.2008.02.003

Google Scholar

[8] P. Girods, A. Dufour, Y. Rogaume, C. Rogaume, A. Zoulalian, Pyrolysis of wood waste containing urea-formaldehyde and melamine-formaldehyde resins, J. Anal. Appl. Pyrolysis, 81 (2008) 113-120.

DOI: 10.1016/j.jaap.2007.09.007

Google Scholar

[9] P. Girods, Y. Rogaume, A. Dufour, C. Rogaume, A. Zoulalian, Low-temperature pyrolysis of wood waste containing urea-formaldehyde resin, Renewable Energy, 33 (2008) 648-654.

DOI: 10.1016/j.renene.2007.03.026

Google Scholar

[10] T. Hirata, S. Kawamoto, A. Okuro, Pyrolysis of melamine-formaldehyde and urea-formaldehyde resins, J. Appl. Polym. Sci. 42 (1991) 3147-3163.

DOI: 10.1002/app.1991.070421208

Google Scholar

[11] X. Jiang, C. Li, Y. Chi, J. Yan, TG-FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion, J. Hazard. Mater. 173 (2010) 205-210.

DOI: 10.1016/j.jhazmat.2009.08.070

Google Scholar

[12] K. -M. Hansson, L. -E. Åmand, A. Habermann, F. Winter, Pyrolysis of poly-leucine under combustion-like conditions, Fuel, 82 (2003) 653-660.

DOI: 10.1016/s0016-2361(02)00357-5

Google Scholar

[13] M. Becidan, O. Skreiberg, J.E. Hustad, NOx and N2O precursors (NH3 and HCN) in pyrolysis of biomass residues, Energy Fuels, 21 (2007) 1173-1180.

DOI: 10.1021/ef060426k

Google Scholar

[14] E. Biagini, F. Lippi, L. Tognotti, Characterization of a lab-scale platinum filament pyrolyzer for studying the fast devolatilization of solid fuels, Fuel, 85 (2006) 2408-2418.

DOI: 10.1016/j.fuel.2006.06.002

Google Scholar

[15] Q. Ren, C. Zhao, X. Wu, C. Liang, X. Chen, J. Shen, Z. Wang, Formation of NOx precursors during wheat straw pyrolysis and gasification with O2 and CO2, Fuel, 89 (2010) 1064-1069.

DOI: 10.1016/j.fuel.2009.12.001

Google Scholar

[16] K. -M. Hansson, J. Samuelsson, L. -E. Åmand, C. Tullin, The temperature's influence on the selectivity between HNCO and HCN from pyrolysis of 2, 5-diketopiperazine and 2-pyridone, Fuel, 82 (2003) 2163-2172.

DOI: 10.1016/s0016-2361(03)00206-0

Google Scholar

[17] P. Girods, A. Dufour, Y. Rogaume, C. Rogaume, A. Zoulalian, Comparison of gasification and pyrolysis of thermal pre-treated wood board waste, J. Anal. Appl. Pyrolysis, 85 (2009) 171-183.

DOI: 10.1016/j.jaap.2008.11.014

Google Scholar

[18] T. NAKAI, T. HATA, Y. IMAMURA, Chemical components of pyrolized liquid of wood-based materials and their bioactive efficiency, Wood. Res. 89 (2002) 33-34.

Google Scholar

[19] T. Nakai, S.N. Kartal, T. Hata, Y. Imamura, Chemical characterization of pyrolysis liquids of wood-based composites and evaluation of their bio-efficiency, Bldg. Environ. 42 (2007) 1236-1241.

DOI: 10.1016/j.buildenv.2005.11.022

Google Scholar