Synthesis and Characterization of Titanate Nanotubes and Nanowires in a Revolving Autoclave

Article Preview

Abstract:

One-dimensional titanate nanotubes and nanowires were synthesized by hydrothermally treating TiO2 nanoparticles (P25) with an aqueous NaOH solution in a revolving autoclave. The effect of the reaction temperature and time on the morphology and crystal structure of titanate nanomaterials was systematically studied. When the hydrothermal treatment was carried out in a revolving autoclave, nanotubes with NaxH1-xTi2-x/4Υx/4O4•H2O crystal structure were obtained and favor to self-assemble in shape of clusters and bundles, and nanotube bundles tended to transform into nanowires with the crystal structure transforming into NaxH2-xTi3O7 within 48 h at a hydrothermal temperature higher than 130 °C. Based on the experimental results, a possible mechanism for the formation of titanate nanotube by wrapping of nanosheets and nanowires formed via the cooperation of oriented attachment and Ostwald ripening was proposed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Pages:

497-502

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O.K. Varghese, D.W. Gong, M. Paulose, K.G. Ong and C.A. Grimes: Sensors and Actuators B-Chemical. Vol. 93 (2003), p.338.

DOI: 10.1016/s0925-4005(03)00222-3

Google Scholar

[2] D.U. Hong, C.H. Han, S.H. Park, I.J. Kim, J. Gwak, S.D. Han and H.J. Kim: Current Applied Physics. Vol. 9 (2009), p.172.

Google Scholar

[3] Q. Zhao, M. Li, J.Y. Chu, T.S. Jiang and H.B. Yin: Applied Surface Science. Vol. 255 (2009), p.3773.

Google Scholar

[4] X.W. Zhang, J.H. Pan, A.J.H. Du, J.W. Ng, D.D. Sun and J.O. Leckie: Materials Research Bulletin. Vol. 44 (2009), p.1070.

Google Scholar

[5] C.J. Lin, Y.T. Lu, C.H. Hsieh and S.H. Chien: Applied Physics Letters. Vol. 94 (2009), p.113102.

Google Scholar

[6] T.S. Kang, A.P. Smith, B.E. Taylor and M.F. Durstock: Nano Letters. Vol. 9 (2009), p.601.

Google Scholar

[7] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara: Langmuir. Vol. 14 (1998), p.3160.

DOI: 10.1021/la9713816

Google Scholar

[8] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara: Advanced Materials. Vol. 11 (1999), p.1307.

DOI: 10.1002/(sici)1521-4095(199910)11:15<1307::aid-adma1307>3.0.co;2-h

Google Scholar

[9] G.H. Du, Q. Chen, R.C. Che, Z.Y. Yuan and L.M. Peng: Applied Physics Letters. Vol. 79 (2001), p.3702.

Google Scholar

[10] Q. Chen, W.Z. Zhou, G.H. Du and L.M. Peng: Advanced Materials. Vol. 14 (2002), p.1208.

Google Scholar

[11] R.Z. Ma, Y. Bando and T. Sasaki: Chemical Physics Letters. Vol. 380 (2003), p.577.

Google Scholar

[12] E. Morgado, M.A.S. de Abreu, O.R.C. Pravia, B.A. Marinkovic, P.M. Jardim, F.C. Rizzo and A.S. Araujo: Solid State Sciences. Vol. 8 (2006), p.888.

Google Scholar

[13] W.J. Li, T. Fu, F. Xie, S.F. Yu and S.L. He: Materials Letters. Vol. 61 (2007), p.730.

Google Scholar

[14] M.A. Khan and O.B. Yang: Crystal Growth & Design. Vol. 9 (2009), p.1767.

Google Scholar

[15] D.V. Bavykin, J.M. Friedrich and F.C. Walsh: Advanced Materials. Vol. 18 (2006), p.2807.

Google Scholar

[16] H.Y. Zhu, Y. Lan, X.P. Gao, S.P. Ringer, Z.F. Zheng, D.Y. Song and J.C. Zhao: Journal of the American Chemical Society. Vol. 127 (2005), p.6730.

Google Scholar

[17] J.Q. Huang, Y.G. Cao, Q.F. Huang, H. He, Y. Liu, W. Guo and M.C. Hong: Crystal Growth & Design. Vol. 9 (2009), p.3632.

Google Scholar

[18] J.Q. Huang, Y.G. Cao, M.L. Wang, C.G. Huang, Z.H. Deng, H. Tong and Z.G. Liu: Journal of Physical Chemistry C. Vol. 114 (2010), p.14748.

Google Scholar

[19] E. Horvath, A. Kukovecz, Z. Konya and I. Kiricsi: Chemistry of Materials. Vol. 19 (2007), p.927.

Google Scholar

[20] R.Z. Ma, K. Fukuda, T. Sasaki, M. Osada and Y. Bando: Journal of Physical Chemistry B. Vol. 109 (2005), p.6210.

Google Scholar

[21] R.Z. Ma, Y. Bando and T. Sasaki: Journal of Physical Chemistry B. Vol. 108 (2004), p.2115.

Google Scholar

[22] D.V. Bavykin, V.N. Parmon, A.A. Lapkin and F.C. Walsh: Journal of Materials Chemistry. Vol. 14 (2004), p.3370.

Google Scholar

[23] R. Yoshida, Y. Suzuki and S. Yoshikawa: Materials Chemistry and Physics. Vol. 91 (2005), p.409.

Google Scholar

[24] A. Gajovic, I. Friscic, M. Plodinec and D. Ivekovic: Journal of Molecular Structure. Vol. 924-26 (2009), p.183.

Google Scholar

[25] Y.Q. Wang, G.Q. Hu, X.F. Duan, H.L. Sun and Q.K. Xue: Chemical Physics Letters. Vol. 365 (2002), p.427.

Google Scholar

[26] B.D. Yao, Y.F. Chan, X.Y. Zhang, W.F. Zhang, Z.Y. Yang and N. Wang: Applied Physics Letters. Vol. 82 (2003), p.281.

Google Scholar

[27] W.P. Chen, X.Y. Guo, S.L. Zhang and Z.S. Jin: Journal of Nanoparticle Research. Vol. 9 (2007), p.1173.

Google Scholar

[28] Y. Lan, X.P. Gao, H.Y. Zhu, Z.F. Zheng, T.Y. Yan, F. Wu, S.P. Ringer and D.Y. Song: Advanced Functional Materials. Vol. 15 (2005), p.1310.

Google Scholar

[29] H.R. Penga, G.C. Lia and Z.K. Zhang: Materials Letters. Vol. 59 (2005), p.1142.

Google Scholar

[30] D. Wu, J. Liu, X.N. Zhao, A.D. Li, Y.F. Chen and N.B. Ming: Chemistry of Materials. Vol. 18 (2006), p.547.

Google Scholar

[31] A. Elsanousi, E.M. Elssfah, J. Zhang, J. Lin, H.S. Song and C.C. Tang: Journal of Physical Chemistry C. Vol. 111 (2007), p.14353.

Google Scholar

[32] A. Kukovecz, N. Hodos, E. Horvath, G. Radnoczi, Z. Konya and I. Kiricsi: Journal of Physical Chemistry B. Vol. 109 (2005), p.17781.

Google Scholar