Petal-Like Morphology on the Surface of Porous Anodic Alumina

Article Preview

Abstract:

The formation process of a petal-like morphology on the surface of porous anodic alumina (PAA) is discussed in detail. During the anodizing process, the electronic current is produced within the growing oxide, which results in the oxygen evolution at the pore bottom. The pressure of the oxygen bubbles increases along with the anodizing process, and their high pressure acts as a driving-force of the micro-gas-flow, resulting in the micro-liquid-flow in the pores of PAA. The micro-liquid-flow can flow into each other between a center pore and the nearest neighboring pores. The nanogroove between two pores can be formed due to the dissolving effect during the process of micro-liquid-flow between the two pores. This leads to the formation of the petal-like morphology on the PAA surface. As the micro-liquid-flow leaves off the pore bottom, there a local vacuum is formed. This local vacuum behaves as a driving-force of the micro-liquid-flow, making the electrolyte renovated in the nanopores. The renovated electrolyte can provide enough anions or impurity centers, which are the cause of the generation of the electronic current. The self-organizing for the petal-like morphology on PAA surface is mainly dependent upon the high pressure of the oxygen bubbles and the local vacuum produced at the pore bottom. The present results may help us to understand the nature of the self-organization in the porous anodic oxides.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Pages:

818-824

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Biring, K.T. Tsai, U.K. Sur and Y. L Wang: Nanotechnology Vol. 19 (2008), p.355302.

Google Scholar

[2] W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz and U. Gösele: Nat. Nanotechnol. Vol. 3 (2008), p.234.

Google Scholar

[3] P. Banerjee, I. Perez, L.L. Henn, S. Lee and G.W. Rubloff: Nat. Nanotechnol. Vol. 4 (2009), p.292.

Google Scholar

[4] J.F. Behnke and T. Sands: J. Appl. Phys. Vol. 88 (2000), p.6875.

Google Scholar

[5] Z.X. Su and W.Z. Zhou: Adv. Mater. Vol. 20 (2008), p.3663.

Google Scholar

[6] P. Skeldon, G.E. Thompson, S.J. Garcia-Vergara, R.L. Iglesias and C.E. Blanco: Electrochem. Solid-State Lett. Vol. 9 (2006), p. B47.

DOI: 10.1149/1.2335938

Google Scholar

[7] Q. Huang, W.K. Lye and M.L. Reed: Nanotechnology Vol. 18 (2007), p.405302.

Google Scholar

[8] J.E. Houser and K.R. Hebert: Nat. Mater. Vol. 8 (2009), p.415.

Google Scholar

[9] H. Masuda, F. Hasegwa, and S. Ono: J. Electrochem. Soc. Vol. 144 (1997), p. L127.

Google Scholar

[10] K. Nielsch, J.S. Choi, K. Schwirn, R.B. Wehrspohn and U. Gösele: Nano Lett. Vol. 2 (2002), p.677.

DOI: 10.1021/nl025537k

Google Scholar

[11] F. Y. Li, L. Zhang and R.M. Metzger: Chem. Mater. Vol. 10 (1998), p.2470.

Google Scholar

[12] A.P. Li, F. Müller, A. Birner, K. Nielsch and U. Gösele: Adv. Mater. Vol. 11 (1999), p.483.

Google Scholar

[13] S. Ono, M. Saito and H. Asoh: Electrochim. Acta. Vol. 51 (2005), p.827.

Google Scholar

[14] W. Chen, J.S. Wu, J.H. Yuan, X.H. Xia and X.H. Lin: J. Electroanal. Chem. Vol. 600 (2007), p.257.

Google Scholar

[15] J.K. Han, J. Kim, Y.C. Choi, K.S. Chang, J. Lee, H.J. Youn and S.D. Bu: Physica E Vol. 36 (2007), p.140.

Google Scholar

[16] A. Bai, C.C. Hu, Y.F. Yang and C.C. Lin: Electrochim. Acta. Vol. 53 (2008), p.2258.

Google Scholar

[17] D.D. Li, C.H. Jiang, J.H. Jiang and J.G. Lu: Chem. Mater. Vol. 21 (2009), p.253.

Google Scholar

[18] R. Hillebrand, F. Müller, K. Schwirn, W. Lee and M. Steinhart: ACS Nano. Vol. 2 (2008), p.913.

Google Scholar

[19] X.F. Zhu, L. Liu, Y. Song, H.B. Jia, H.D. Yu, X.M. Xiao and X.L. Yang: Monatsh Chem. Vol. 139 (2008), p.999.

Google Scholar

[20] X.F. Zhu, Y. Song, L. Liu, C.Y. Wang, J. Zheng, H.B. Jia and X.L. Wang: Nanotechnology Vol. 20 (2009), p.475303.

Google Scholar

[21] X.F. Zhu, L. Liu, Y. Song, H.B. Jia, H.D. Yu, X.M. Xiao and X.L. Yang: Mater. Lett. Vol. 62 (2008), p.4038.

Google Scholar

[22] Y.C. Sui and J.M. Saniger: Mater. Lett. Vol. 48 (2001), p.127.

Google Scholar

[23] A. Suleiman, T. Hashimoto, P. Skeldo, G.E. Thompson, F. Echeverria, M.J. Graham, G.I. Sproule, S. Moisa, H. Habazaki, P. Bailey and T.C.Q. Noakes: Corros. Sci. Vol. 50 (2008), p.1353.

DOI: 10.1016/j.corsci.2008.01.009

Google Scholar

[24] Y. Li, H. Shimada, M. Sakairi, K. Shigy, H. Takahashi and M. Seo: J Electrochem. Soc. Vol. 144 (1997), p.866.

Google Scholar

[25] X.L. Yang, X.F. Zhu, H.B. Jia and T. Han: Monatsh Chem. Vol. 140 (2009), p.595.

Google Scholar

[26] S. Singh, M. Festin, W.R.T. Barden, L. Xi, J.T. Francis and P. Kruse: ACS Nano. Vol. 2 (2008), p.2363.

Google Scholar

[27] K.M. Gopal, S. Karthik, P. Maggie, K.V. Oomman and A.C. Grimes: Nano Lett. Vol. 6 (2006), p.215.

Google Scholar