[1]
Krajcinovic, D., and Fonseka, G.U. The continuous damage theory of brittle materials – Part 1: General Theory, J. of App. Mech. Vol. 48(1981), pp.809-815.
DOI: 10.1115/1.3157739
Google Scholar
[2]
Simo, J.C., and Ju, J.W. Strain- and stress-based continuum damage models – I. Formulation, Int. J. Solids Struct. Vol. 23(1987), pp.821-840.
DOI: 10.1016/0020-7683(87)90083-7
Google Scholar
[3]
Mazars, J., and Pijaudier-Cabot, G. Continuum damage theory-Application to concrete, ASCE J. of Eng. Mech. Vol. 115(1989), pp.345-365.
DOI: 10.1061/(asce)0733-9399(1989)115:2(345)
Google Scholar
[4]
Peerlings, R.H.J. Enhanced damage modelling for fracture and fatigue, PhD dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands (1999).
Google Scholar
[5]
Jirásek, M., Rolshoven, S., Grassl, P. Size effect on fracture energy induced by non-locality, Int. J. Numer. Anal. Meth. Geomech. Vol. 28(2004), pp.653-670.
DOI: 10.1002/nag.364
Google Scholar
[6]
Comi, C., Perego, U. Fracture energy based bi-dissipative damage model for concrete, Int. J. Solids Struct. Vol. 38(2001), pp.6427-6454.
DOI: 10.1016/s0020-7683(01)00066-x
Google Scholar
[7]
Faria, R., Oliver, J., and Ceverra, M. A strain-based plastic viscous-damage model for massive concrete structures, Int. J. Solids Struct. Vol. 35(1998), pp.1533-1558.
DOI: 10.1016/s0020-7683(97)00119-4
Google Scholar
[8]
irásek, M., and Patzák, B. Consistent tangent stiffness for nonlocal damage models, Computers and Structures. Vol. 80(2002), pp.1279-1293.
DOI: 10.1016/s0045-7949(02)00078-0
Google Scholar
[9]
Luccioni, B., Oller, S., and Danesi, R. Coupled plastic-damaged model, Comput. Methods Appl. Mech. Engrg. Vol. 129(1996), pp.81-89.
DOI: 10.1016/0045-7825(95)00887-x
Google Scholar
[10]
Borino, G., Failla, B., Parrinello, F. A symmetric nonlocal damage theory, Int. J. Solids Struct. Vol. 40( 2003), pp.3621-3645.
DOI: 10.1016/s0020-7683(03)00144-6
Google Scholar
[11]
Ortiz, M. A constitutive theory for the inelastic behavior of concrete, Mechanics of Materials. Vol. 4(1985), pp.67-93.
Google Scholar
[12]
Simo, J.C., and Ju, J.W. Strain- and stress-based continuum damage models – I. Formulation, Int. J. Solids Struct. Vol. 23(1987), pp.821-840.
DOI: 10.1016/0020-7683(87)90083-7
Google Scholar
[13]
Mazars, J., and Pijaudier-Cabot, G. Continuum damage theory-Application to concrete, ASCE Journal of Engineering Mechanics. Vol. 115(1989), pp.345-365.
DOI: 10.1061/(asce)0733-9399(1989)115:2(345)
Google Scholar
[14]
Addessi, D., Marfia, S., Sacco., E. A plastic nonlocal damage model, Comput. Methods Appl. Engrg. Vol. 191(2002), pp.1291-1310.
DOI: 10.1016/s0045-7825(01)00325-5
Google Scholar
[15]
Lemaitre, J : A course on damage mechanics(Springer Verlag, 1992).
Google Scholar
[16]
Lee, J., and Fenves, G.L. Plastic-damage model for cyclic loading of concrete structures, ASCE J. Eng. mech. Vol. 124(1998), pp.892-900.
DOI: 10.1061/(asce)0733-9399(1998)124:8(892)
Google Scholar
[17]
Faria, R., Oliver, J., and Ceverra, M. A strain-based plastic viscous-damage model for massive concrete structures, Int. J. Solids Struct. Vol. 35(1998), pp.1533-1558.
DOI: 10.1016/s0020-7683(97)00119-4
Google Scholar
[18]
Yazdani, S., and Schreyer, H.L. An anisotropic damage model with dilatation for concrete, Mechanics of Materials. Vol. 7(1988), pp.231-244.
DOI: 10.1016/0167-6636(88)90022-1
Google Scholar
[19]
efferson, A.D. Craft – a plastic-damage-contact model for concrete. I. Model theory and thermodynamic considerations, Int. J. Solids Struct. Vol. 40(2003), P. 5973-5999.
DOI: 10.1016/s0020-7683(03)00390-1
Google Scholar