The Optimal Design of Work Location for a RRR 3-DoF Manipulator

Article Preview

Abstract:

In this paper, an algorithm is proposed to determine the optimal work location to minimize the sum of the joint angle. The algorithm use the sum of the three joint angle as the objective function, through analysis of workable domain, coordinates transformation, globe search, to get the optimal work position of the manipulator. Simulation shows that the proposed algorithm works well for stipulated aim.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 201-203)

Pages:

1213-1216

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.H. Korayem, M. Haghpanahi, H.N. Rahimi et al., in: New Advan. in Intel. Decision Techno., SCI 199, edited by K. Nakamatsu et al., Finite Element Method and Optimal Control Theory for Path Planning of Elastic Manipulators, p.117, Springer-Verlag Berlin Heidelberg, (2009).

DOI: 10.1007/978-3-642-00909-9_12

Google Scholar

[2] F. ABDESSEMED, and K. BENMAHAMMED: Journal of Intelligent and Robotic Systems, vol. 30 (2001), p.73.

Google Scholar

[3] Key Gew Chae, and Jong Hyeon Park: Journal of Mechanical Science and Technology, vol. 23 (2009), p.114.

Google Scholar

[4] Luis Gracia, Javier Andres, and Josep Tornero: International Journal of Control, Automation, and Systems, vol. 7, no. 1 (2009), p.85.

Google Scholar

[5] Panwadee Tangpattanakul, Anupap Meesomboon, and Pramin Artrit, in: Recent Advances in Harmony Search Algorithm, SCI 270, edited by Optimal Trajectory of Robot Manipulator Using Harmony Search Algorithms, p.23, Springer-Verlag Berlin Heidelberg, (2010).

DOI: 10.1007/978-3-642-04317-8_3

Google Scholar

[6] ELEFTHERIA S. SERGAKI, and GEORGE S. STAVRAKAKIS: Journal of Intelligent and Robotic Systems, vol. 33 (2002), p.187.

Google Scholar

[7] F. Chapelle, and P. Bidaud: Mechanism and Machine Theory, vol. 41 (2006), p.1196.

Google Scholar

[8] Ou Ma, and Jorge Angeles, Optimum Design of Manipulators Under Dynamic Isotropy Conditions, in: 1993 IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 1 (1993), p.470.

DOI: 10.1109/robot.1993.292024

Google Scholar

[9] Yujiang Xiang, Jasbir S. Arora, and Karim Abdel-Malek: Struct Multidisc Optim, vol. 37 (2009), p.595.

Google Scholar

[10] J.A. Snyman, and D.F. Berner: Structural Optimization, vol. 18 (1999), p.95.

Google Scholar