Quality Prediction Model Based on PCA-BP Neural Network for Tobacco Leaves Redrying Process

Abstract:

Article Preview

Aiming to the problem that is very difficult to establish the mechanism model of quality for the process of tobacco leaves redrying, this paper proposes a quality prediction model based on principal component analysis (PCA) and improved back propagation (BP)neural network for tobacco leaves redrying process. Firstly, 12 input variables are confirmed by analyzing the factors on quality of tobacco leaves redrying process. Second, the methods of PCA is used to eliminate the correlation of original input layer data, in which 12 input variables are transformed into 6 uncorrelated indicators. Then, the quality prediction model based on improved BP neural network is established. Finally, a simulation experiment is conducted and the average prediction error is as low as 1.03%, the absolute error for forecasting is fluctuated in the range of 0.16% - 2.49%. The result indicates that the model is simpler and has higher stability for prediction, which can completely meet the actual requirements of the tobacco leaves redrying process.

Info:

Periodical:

Advanced Materials Research (Volumes 201-203)

Edited by:

Daoguo Yang, Tianlong Gu, Huaiying Zhou, Jianmin Zeng and Zhengyi Jiang

Pages:

1627-1631

DOI:

10.4028/www.scientific.net/AMR.201-203.1627

Citation:

J. K. Yin et al., "Quality Prediction Model Based on PCA-BP Neural Network for Tobacco Leaves Redrying Process", Advanced Materials Research, Vols. 201-203, pp. 1627-1631, 2011

Online since:

February 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.