The Creep Behaviour of Extruded Mg-5Li-3Al-1.5Zn-2RE Alloy

Article Preview

Abstract:

The Mg-5Li-3Al-1.5Zn-2RE (LaPrCe) alloy was prepared by hot-chamber extrusion process after casting. The alloy consists of α-Mg solid solution and intermetallic phases (Al11RE3 phase and Al2RE phase). The microstructural analysis of the alloy reveals the correlation between microstructure and creep properties. The stress exponent of n varies from 4.25 to 6.23, and the activation energy varies from 104 to 134 kJ/mol. There is a transition between dislocations climb dominated creep mechanism and dislocation creep controlled by non-basal planes slip. Tensile creep tests were combined with detailed transmission electron microscopy in order to characterize the Al11RE3 phase, which had thermal stability at 448K during the creep test. The dislocations pinned and cross-slip dislocations were observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

492-496

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Drozd, Z. Trojanová, S. Kúdela. J. Alloys Compd. 378 (2004), 192–195.

Google Scholar

[2] B.L. Mordike, T. Ebert, Mater. Sci. Eng. A 302( 2001), 37–45.

Google Scholar

[3] Y. Terada, T. Sato. Mater. Trans. 49 (2008) , 1957-(1962).

Google Scholar

[4] Y. Terada, D. Itoh, T. Sato. Mater. Sci. Eng. A 523(2009), 214–219.

Google Scholar

[5] M.O. Pekguleryuz, A.A. Kaya. Adv. Eng. Mater. 5(2003), 866–878.

Google Scholar

[6] C. J. Boehlert. J Mater Sci. 42(2007), 3675–3684.

Google Scholar

[7] J.H. Zhang, P. Yu, K. Liu, D.Q. Fang, D.X. Tang, J. Meng. Mater Design 30(2009), 2372–2378.

Google Scholar

[8] R.Z. Wu, Z.K. Qu, M.L. Zhang. Mater. Sci. Eng. A 516 (2009), 96–99.

Google Scholar

[9] R.Z. Wu, Y.S. Deng, M.L. Zhang. J Mater Sci. 44 (2009), 4132–4139.

Google Scholar

[10] X.R. Meng, R.Z. Wu, M.L. Zhang, et al. J. Alloys Compd. 486( 2009), 722-725.

Google Scholar

[11] R.Z. Wu, Z.K. Qu, M.L. Zhang, Rev. Adv. Mater. Sci. 24 (2010), 35-43.

Google Scholar

[12] R.Z. Wu, M.L. Zhang, Mater. Sci. Eng. A 520( 2009), 36-39.

Google Scholar

[13] W.L. Xiao, S.S. Jia, J. Wang, J.L. Wang, L.M. Wang. J. Alloys Compd. 458 (2008), 178–183.

Google Scholar

[14] S.M. Zhu, M.A. Gibson, J.F. Nie, M.A. Easton, and G.L. Dunlop. The Minerals, Metals & Materials Society and ASM International (2009).

Google Scholar

[15] S.M. Zhu, M.A. Gibson, J.F. Nie, M.A. Easton and T.B. Abbott. Scripta Mater. 58(2008), 477–480.

Google Scholar

[16] H.H. Zou, X.Q. Zeng, C.Q. Zhai, W.J. Ding, Mater. Sci. Eng. A 402 (2005), 142–148.

Google Scholar

[17] W.L. Xiao, S.S. Jia, L.D. Wang, Y.M. Wu, L.M. Wang. J. Alloys Compd. 480 (2009), 33–36.

Google Scholar

[18] T. Wang, M.L. Zhang, Z.Y. Niu, B. Liu. J Rare Earth. 24(2006), 797- 800.

Google Scholar

[19] R. Fernandez, G. Gonzalez-Doncel, Acta Mater. 56(2008), 2549.

Google Scholar

[20] K.T. Park, F.A. Mohamed. Metall Mater Trans A, 12 (1995), 3119−3129.

Google Scholar

[21] P. Zhang. Scripta Mater. 52, (2005), 277−282.

Google Scholar

[22] S. Spigareli, M. Cabibbo, E. Evangelista, M. Talianker, V. Ezersky. Mater Sci. Eng. A 289(2000), 172–181.

Google Scholar

[23] J.H. Guo, L.Q. Chen, Y.B. Xu, F.Z. Lian. Mater. Sci. Eng. A 443(2007), 66–70.

Google Scholar

[24] S. Kobayashi, T. Yoshimura, S. Tsurekawa, T. Watanabe and J.Z. Cui. Mater. Trans. 44(2003), 1469-1479.

Google Scholar

[25] H.J. Frost, M.F. Ashby. Oxford: Pergamon Press, 1982: 44.

Google Scholar

[26] B.R. Powell,V. Rezhets, M.P. Balogh and R.A. Waldo. JOM54, 8(2002), 34-38. 5.

Google Scholar