Controlled Hydrothermal Synthesis of ZnO Nano and Microstructure Materials with Photocatalytic Properties

Article Preview

Abstract:

Various ZnO nano and microstructures, such as nanorods, microflowers composed of nanorods, and microrods were hydrothermally self-assembled. The morphology of the formed ZnO nano and microstructures could be easily tuned by varying the experimental parameters of the NaOH concentration. The crystal structure of samples was investigated by XRD, and the diffraction peaks were indexed to hexagonal wurtzite structure. A possible growth mechanism was proposed on the basis of the morphology evolution of nano and microstructures observed by SEM. Furthermore, the photoluminescence and photocatalytic properties of ZnO nano and microstructures were investigated. The results show that the ZnO microrods and microflowers exhibited higher photodegradation efficiency than that of ZnO nanorods, which maybe due to the exposed polar faces of better crystalline rather than the size of ZnO.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 217-218)

Pages:

1212-1217

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Dj.M. Maric, P.F. Meier and S.K. Estreicher: Mater. Sci. Forum Vol. 83-87 (1992), p.119.

Google Scholar

[1] R.Y. Hong, J.H. Li, L.L. Chen, D.Q. Liu, H.Z. Li, Y. Zheng, J. Ding: Powder Technology Vol. 189 (2009), P. 426.

Google Scholar

[2] Y. Dai, Y. Zhang, Q. K. Li, and C. W. Nan: Chemical Physics Letters Vol. 358 (2002), P. 83.

Google Scholar

[3] M.J. Zheng, L.D. Zhang, G.H. Li, and W.Z. Shen: Chemical Physics Letters Vol. 363 (2002), P. 123.

Google Scholar

[4] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que: J. Phys. Chem. B Vol. 108 (2004), P. 3955.

Google Scholar

[5] S.H. Jo, J.Y. Lao, Z.F. Ren, R.A. Farrer, T. Baldacchini, and J.T. Fourkas: Applied physics letters Vol. 83 (2009) P. 4821.

Google Scholar

[6] C. Xu and X. Sun: Applied physics letters Vol. 83 (2009) P. 3806.

Google Scholar

[7] C. Baratto, G. Sberveglieri, A. Onischuk, B. Caruso, and S. di Stasio: Sensors and Actuators B: Chemical Vol. 100 (2004) P. 261.

DOI: 10.1016/j.snb.2003.12.045

Google Scholar

[8] Z.L. Wang: Materials Today, Vol. 7 (2004) P. 26.

Google Scholar

[9] Y.X. Wang, X.Y. Li, N. Wang, X. Quan, and Y.Y. Chen: Separation and Purification Technology Vol. 62 (2008) P. 727.

Google Scholar

[10] Z.L. Wang: J. Phys.: Condens. Matter: Vol. 16 (2004) P. 829.

Google Scholar

[11] H. Wang, M.Y. Zhong, Y. Liu, M. Li, H. Huang, H. Shen: Chinese Science Bulletin Vol. 55 (2010) P. 328.

Google Scholar

[12] D.R. Chen, X. Jiao, and G. Cheng: Solid State Communications Vol. 113 (1999) P. 363.

Google Scholar

[13] J.Q. Hu, X.L. Ma, Z.Y. Xie, N.B. Wong, C.S. Lee, and S.T. Lee: Chemical Physics Letters Vol. 344 (2001) P. 97.

Google Scholar

[14] M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Weber, and P.D. Yang: Advanced MaterialsVol. 13 (2001) P. 113.

Google Scholar

[15] C.H. Liu, W.C. Yiu, F.C.K. Au, J.X. Ding, C.S. Lee, and S.T. Lee: Applied physics letters Vol. 83 (2009) P. 3168.

Google Scholar

[16] M. Li, J. Zhai, H. Liu, Y.L. Song, L. Jiang, and D.B. Zhu: J. Phys. Chem. B Vol. 107 (2003) P. 9954.

Google Scholar

[17] R. Laudise, and A. Ballman: The Journal of Physical Chemistry Vol. 64 (1960) P. 688.

Google Scholar

[18] J.B. Baxter, F. Wu, and E.S. Aydil: Applied physics letters Vol. 83 (2003) P. 3797.

Google Scholar

[19] Q. Ahsanulhaq, S.H. Kim, J.H. Kim, and Y.B. Hahn: Materials Research Bulletin Vol. 43 (2008) P. 3483.

Google Scholar

[20] Y.L. Liu, Y.C. Liu, J.Y. Zhang, Y.M. Lu, D.Z. Shen, and X.W. Fan: Journal of Crystal Growth Vol. 290 (2006) P. 405.

Google Scholar