Temperature Effect on Microstructure and Mechanical Behavior of Ti-15V-3Cr-3Al-3Sn

Abstract:

Article Preview

Ti-15V-3Cr-3Al-3Sn, β-phase titanium alloy, is subjected to study the temperature effects on microstructure and mechanical behavior by using different aging temperature (426 ∼ 600 oC) and high temperature (450oC) notched tensile test. It follows that the highest hardness of Ti-15V-3Cr-3Al-3Sn would be got up to 420 Hv after 426 oC aging. Afterward, the hardness is decreasing with increasing aging temperature. By means of microstructure analyses, it reveals that the narrow and intragranular α-phase precipitates with lamella-shape in the grains at 426 oC aging treatment caused the age hardening of the titanium alloy. Subsequently, the α-phase precipitates were coarsening with increasing the aging temperature and showed the thick morphologies distributed along grain boundaries, which results in overaging. In the notched tensile test at 450oC, the highest notched tensile strength (1160 MPa) is also obtained after 426oC aging treatment, and then decreasing with increasing aging temperature. Its mechanical behavior is different from the room temperature notched tensile test, which demonstrates the lowest notched tensile strength (813 MPa) after 426 oC aging treatment due to the notched embrittlement effect. According to microstructure study, it suggests that the environment temperature effect enhanced the toughness of the alloy and terminated the notched embrittlement effect resulted from the 426oC aging treatment.

Info:

Periodical:

Advanced Materials Research (Volumes 217-218)

Edited by:

Zhou Mark

Pages:

1277-1282

DOI:

10.4028/www.scientific.net/AMR.217-218.1277

Citation:

R. T. Huang et al., "Temperature Effect on Microstructure and Mechanical Behavior of Ti-15V-3Cr-3Al-3Sn", Advanced Materials Research, Vols. 217-218, pp. 1277-1282, 2011

Online since:

March 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.