Pseudo-Potential Calculations of Structural, Elastic and Thermal Properties of Si3N4

Article Preview

Abstract:

The ground-state lattice constants, bulk modulus and six independent elastic constants of β-Si3N4 have been calculated through the framework of density functional theory within the plane-wave pseudopotential method. The quasi-harmonic Debye model, by means of total energy versus volume calculations obtained with the plane-wave pseudo-potential method, is applied to the study of the thermal, elastic and vibrational effects. In the temperature interval 0--1800K, the calculated results agree reasonably with numerous experimental and theoretical data. Other thermal outcomes gained from this method provide overall predictions accurately for the temperature and pressure dependence of different quantities such as the thermal expansion, heat capacity and Debye temperature. The variations of Debye temperature ӨD with temperature are analysed, which show the temperature has hardly any effect on ӨD. Therefore, the present study indicates that first-principles combined with quasi-harmonic Debye model is an effective way to stimulate the behaviors of solids at simultaneously high temperature and pressure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 217-218)

Pages:

1619-1624

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. F. Chen, Z. X. Ren and Z. F. Ding: Acta Phys. Sin. (Overseas Edition) Vol. 4 (1994), p.698.

Google Scholar

[2] M. H. Manghnani, S. N. Tkachev, P. V. Zinin, C. Glorieoux, P. Karvankova and S. Veprek: J. Appl. Phys. Vol. 97 (2005), p.054308.

DOI: 10.1063/1.1854209

Google Scholar

[3] J. Jiang, H. Lindelov, L. Gerward, K. Stahl, J. M. Recio and P. Mori-Sanchez: Phys. Rev. B Vol. 65 (2002), p. 161202R.

Google Scholar

[4] S. D. Mo, L. Z. Ouyang, W. Y. Ching, I. Tanaka, Y. Koyama and R. Riedel: Phys. Rev. Lett. Vol. 83 (1999), p.5046.

Google Scholar

[5] D. R. Southworth, R. A. Barton, S. S. Verbridge, B. Iiic, A. D. Fefferman, H. G. Craighead and J. M. Parpia: Phys. Rev. Lett. Vol. 102 (2009), p.225503.

Google Scholar

[6] C. Y. Tian, N. Liu and M. H. Lu: J. Mater. Proc. Tech. Vol. 205 (2008), p.411.

Google Scholar

[7] A. Kuwabara, K. Matsunaga and I. Tanaka: Phys. Rev. B Vol. 78 (2008), p.064104.

Google Scholar

[8] C. Zhang, Y. Sun, R. Tian and S. Zou: Acta Phys. Sin. Vol. 56 (2007), p.5969.

Google Scholar

[9] G. A. Slack and I. C. Huseby: J. Appl. Phys. Vol. 53 (1982), p.6817.

Google Scholar

[10] G. A. Swift, E. Üstündag, B. Clausen, M. A. M. Bourke and H. T. Lin: Appl. Phys. Lett. Vol. 82 (2003), p.1039.

Google Scholar

[11] P. Giannozzi, S. Baroni, n. Bonini, et al. J. Phys.: Condens. Matter Vol. 21 (2009), p.395502.

Google Scholar

[12] J. P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1996), p.3865.

Google Scholar

[13] D. Vanderbilt: Phys. Rev. B Vol. 41 (1990), p.7892.

Google Scholar

[14] H. J. Monkhorst and J. D. Pack, Phys. Rev. B Vol. 13 (1976), p.5188.

Google Scholar

[15] M. A. Blanco, E. Francisco and V. Luaňa: Comput. Phys. Commun. Vol. 158 (2004), p.57.

Google Scholar

[16] F. D. Murnaghan: Proc. Natl. Acad. Sci. U. S. A. Vol. 30 (1944), p.244.

Google Scholar

[17] R. Vogelgesang, M. Grimsditch and J. S. Wallace: Appl. Phys. Lett. Vol. 76 (2000), p.982.

Google Scholar

[18] D. du Boulay, N. Ishizawa, T. Atake, V. Streltsov, K. Furuyad and F. Munakata: Acta Crystallogr. Sect. B: Struct. Sci. Vol. 60 (2004), p.388.

DOI: 10.1107/s010876810401393x

Google Scholar

[19] S. Ogata, N. Hirosaki, C. Kover and Y. Shibutani: Acta Mater. Vol. 52 (2004), p.233.

Google Scholar

[20] C. Sevik and C. Bulutay: J. Mater. Sci. Vol. 42 (2007), p.6555.

Google Scholar

[21] W. Y. Ching, L. Ouyang and J. D. Gale: Phys. Rev. B Vol. 61 (2000), p.8696.

Google Scholar

[22] D. C. Wallace: Thermodynamics of Crystals (Wiley Press, USA 1972).

Google Scholar

[23] M. R. Schwarz: High Pressure Synthesis of Novel Hard Materials: Spinel Si3N4 and Derivates (Kassel university press, Germany 2003) p.181.

Google Scholar

[24] R. R. Reeber: Therm. Conduct. Vol. 27 (2005), p.525.

Google Scholar

[25] R. J. Bruls, H. T. Hintzen, G. de With, R. Metselaar and J. C. van Miltenburg: J. Phys. Chem. Solids Vol. 62 (2001), p.783.

Google Scholar

[26] C. M. B. Henderson and D. Taylor: Trans. Br. Ceram. Soc. Vol. 74 (1975), p.49.

Google Scholar

[27] I. C. Huseby, G. A. Slack and R. H. Arendt: Bull. Am. Ceram. Soc. Vol. 60 (1981), p.919.

Google Scholar