Deposition of TiO2 Thin Films Using Magnetron Sputtering

Article Preview

Abstract:

TiO2 with 20nm in diameter have been prepared by using magnetron sputtering technique. The structure of these powers was determined by X-ray diffraction experiments. The average grain size and particle size in these powers were measured by the line profile analysis method of X-ray diffraction patterns and by scan electron microscopy, respectively. The thin films were investigated by using XRD, SEM measurements.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 217-218)

Pages:

1743-1746

Citation:

Online since:

March 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, Vol. 37 (1972), p.238.

DOI: 10.1038/238037a0

Google Scholar

[2] N. Sakai, A. Fujishima, T. Watanable, and K. Hashimoto, Quantitative Evaluation of the Photoinduced Hydrophilic Conversion Properties of TiO2 Thin Film Surfaces by the Reciprocal of Contact Angle, Journal. Phys. Chem. B Vol. 107, (2003).

DOI: 10.1021/jp022105p

Google Scholar

[3] K. Hashimoto, H. Irie, and A. Fujishima, TiO2 photocatalysis. A historical overview and future prospects, J. Appl. Phys., Part 1 44, (2005), p.869.

Google Scholar

[4] Ohno S, Sato D, Kon M, Song PK, et al. Thin Solid Films, 2003, p.445.

Google Scholar

[5] Miyagi T, Kamei M, Ogawa T, Mitsuhashi T, Yamazaki A, Sato T. Thin Solid Films Vol. 32. (2003), p.442.

DOI: 10.1016/s0040-6090(03)00934-9

Google Scholar

[6] Zakrzewska K, Brudnik A, Radecka M, Posadowski W. Thin Solid Films Vol. 152, (1999), p.343–344.

DOI: 10.1016/s0040-6090(98)01651-4

Google Scholar

[7] Frach P, G. X. D, Goedicke K, Fahland M, Gnehr W-M. Thin Solid Films. Vol. 25, (2003), p.445.

DOI: 10.1016/s0040-6090(03)01153-2

Google Scholar

[8] Pierre a C. Sol-gel processing of ceramic powders. Ceramic Bulletin, Vol. 8, (1991), p.1281.

Google Scholar

[9] Shi. l. y. Structure of Microemulsion and Application of W/O Microemulsion in the Preparation of Ultrafine Particles, Functional and Materials Vol. 29, (1998), p.136.

Google Scholar

[10] Shi Li, chloride rutile titanium dioxide preparation of Technology. Chemical Production and Technology, Vol. 4(1997), p.1.

Google Scholar

[11] Ahktar M K Xiong Y, Pratsinis S E. Vapor synthesis of titania powder by tetrachloride oxidation. Aiche, Vol. 10 (1991), p.1561.

DOI: 10.1002/aic.690371013

Google Scholar

[12] Akhter M K, Pratsinis S E. Dopants in vapor-phase synthesis of titania powders. J Am Ceram Soc, Vol. 75, (1992), p.3408.

Google Scholar

[13] S. Ohno, D. Sato, M. Kon, P. K. Song, M. Yoshikawa, M. Suzuki, P. Frach, and Y. Shigesato, Thin Solid Films Vol, 27, (2003), P. 445.

DOI: 10.1016/s0040-6090(03)01152-0

Google Scholar

[14] S. Ohno, D. Sato, M. Kon, Y. Sato, M. Yoshikawa, and P. Frach, Jpn. J. Appl. Phys., Part 1 Vol. 43, (2004), p.8234.

Google Scholar

[15] S. Ohno, N. Takasawa, Y. Sato, M. Yoshikawa, K. Suzuki, P. Frach, and Y. Shigesato, Thin Solid Films, Vol. 126, (2006), p.496.

DOI: 10.1016/j.tsf.2005.08.252

Google Scholar

[16] P. Frach, D. Gloss, K. Goedicke, M. Fahland, and W. -M. Gnehr, Thin, Vol. 25 (2003), p.445.

Google Scholar

[17] D. Gloss, P. Frach, O. Zywitzki, T. Modes, S. Klinkenberg, and C. Gottfried, Surf. Coat. Technol. (2005), P. 967.

Google Scholar

[18] P. Frach, D. Gloss, Ch. Metzner, T. Modes, B. Scheffel, and O. Zywitzki, Vacuum, Vol. 80, (2006), p.679.

DOI: 10.1016/j.vacuum.2005.11.001

Google Scholar

[19] M. Kamei and T. Ishigaki, Thin Solid Films Vol. 51 (2006), P. 627.

Google Scholar