Study on Electronic Structure and Optical Property of Silicon Doped with Transition Metal by First Principles

Article Preview

Abstract:

The First-principles based on plane-wave pseudo-potentials methods was applied to investigate the lattice parameter, electronic structure and optical property of pure Si doped with transition metal. The calculation result show that the lattice parameter decrease for Si doped with Cr and therefore the more stable structure, Si doped with Sc, Ti, V have opposite trend. Hybrid and electron transfer display intensely for Si doped with Cr from that with Sc, Ti, V. the absorption peak is located at the region of 2.42eV-2.80eV and the absorption coefficient increase intensely for doped Cr system.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 217-218)

Pages:

930-935

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Li G C , Li G H: Theoretical investigation on new materials for raising efficiency of energy conversionin PEC solar cells. Solar Energy Materials and Solar Cells , Vol. 30, pp. 6l–64, (1993).

DOI: 10.1016/0927-0248(93)90031-w

Google Scholar

[2] S. Guha, J. Yang, A. Banerjee: Amorphous silicon alloy photovoltaic research - present and future. Progress in Photovoltaics: Research and Applications, Vol. 8(1), p.171–185, (2010).

DOI: 10.1002/(sici)1099-159x(200001/02)8:1<141::aid-pip305>3.0.co;2-i

Google Scholar

[3] Matthew Edwards , Stuart Bowden, Ujjwal Das, Michael Burrows : Effect of texturing and surface preparation on lifetime and cell performance in heterojunction silicon solar cells. Solar Energy Materials & Solar Cells, Vol. 92, p.1373–1377, ( 2008).

DOI: 10.1016/j.solmat.2008.05.011

Google Scholar

[4] Cousins P J, Cotter J E: Misfit dislocation generated during non-ideal boron and phosphorus diffusion and their effect on high -efficency silicon solar cells. Photovaltaic Specialists Conference, Conference Record of the Thirty-fwst IEEE, p.1047–1050, (2005).

DOI: 10.1109/pvsc.2005.1488313

Google Scholar

[5] Vernon Julius Cemine, Raymund Sarmiento, Carlo Mar Blanca: High-resolution mapping of the energy conversion efficiency of solar cells and silicon photodiodes in photovoltaic mode [C]Optics Communications, Vol. 28, p.5580–5587, (2008).

DOI: 10.1016/j.optcom.2008.07.086

Google Scholar

[6] R. Kvande1, L. Arnberg C. Martin : Influence of Crucible- and Coating Quality on the Properties of Multicrystalline Silicon for Solar Cells Journal of Crystal Growth, Vol. 09, pp.152-158, (2008).

DOI: 10.1016/j.jcrysgro.2008.09.152

Google Scholar

[7] Dong Zhao: Improvement Plan for The Application of Monocrystalline Silicon Solar Cel1, Hebei Journal of industrial Science & Technology, Vol. 17, p.6, (2000).

Google Scholar

[8] Pankove J: Optical Processes in Semiconductors, Chap. 3, Dover Publications, New York, NY, p.34–81. (1971).

Google Scholar

[9] Toshimichi Ito, Kenji Motoi, Osamu Arakaki, Akio Hiraki : Visible Photoluminescence from Anodically Oxidized Porous Silicon , Jpn. J. Appl. Phys., Vol. 33, pp.1941-1944 (1994).

DOI: 10.1143/jjap.33.l941

Google Scholar

[10] T. Buonassis, M. Heuer, O. F. Vyvenko, A. A. Istratov, E. R. Weber, Z. Ca, B. Lai, T. F. Ciszek and R. Schindler : Applications of synchrotron radiation X-ray techniques on the analysis of the behavior of transition metals in solar cells and single-crystalline silicon with extended defects, Physic B, Vol. (340–342), p.1137–1141. (2003).

DOI: 10.1016/j.physb.2003.09.099

Google Scholar

[11] Graetzel, M: Transition Metal Complexes as Sensitizers for Efficient Mesoscopic[J] Solar Cells Bull. Jpn. Soc. Coord. Chem, Vol. 51, pp.3-12. (2008).

DOI: 10.4019/bjscc.51.3

Google Scholar

[12] Shivaprasad Karanth, Ganesh H. Shanbhogue,C. L. Nagendra: Effect of high-energy electron-beam irradiation on the optical properties of ion-beam-sputtered silicon oxynitride thin films, Applied Optics, Vol. 44(29), pp.6186-6192. ( 2007).

DOI: 10.1364/ao.44.006186

Google Scholar

[13] Baroni S, Gironcoli S D, Corso A D, Giannozzi P: Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. Vol, 73, pp.515-562. (2001).

DOI: 10.1103/revmodphys.73.515

Google Scholar

[14] Kohn. W, Sham. L J. Phys. Rew. (A), Vol, 140, p.40. (1965).

Google Scholar

[15] Stich I, payne M C, King-Smith R D, et al. Phys. Rev. Lett, Vol, 9, p.66. (1992).

Google Scholar

[16] Milman V, Winkler B, White J A. Quantum Chem, Vol. 77, p.5. (2000).

Google Scholar

[17] Clark S J, Segall Philip M D, Lindan J D. J. Phys. Condens. Mat, Vol. 14. (2002).

Google Scholar

[18] Sham L J and Kohn W Phys. Rev. B56. p.145. (1966).

Google Scholar

[19] Ceperley, D. M, Alder, B. J. Phys. Rev. Lett, Vol. 45, pp.566-569. (1980).

Google Scholar

[20] Mokhorst H J and Pack J D Phys. Rev, B13, p.5188. (1976).

Google Scholar

[21] G. Kresse,J. Furthmuller. Phys. Rev. B54, p.5410. (1996).

Google Scholar

[22] Zhao Kai-Hua, Chen Xi-Mou Electromagnetics.BeiJing:Higher education publishing house, p.179~184. (1985).

Google Scholar

[23] Wang Yuan-Xu Wang Chun-Lei Zhong Wei-Lie: Optical properties of SrTi03 and SrHf03 by first principle calculation , ACTA PHYSICA SINICA, Vol. 53, pp.32-35. (2004).

DOI: 10.7498/aps.53.3141

Google Scholar

[24] Scott A. McHugo A.C.: Direct Correlation of transition Metal Impurities and MinorityCarrier Recombination in ulticrystalline Silicon, Applied physics letters, Vol. 72, pp.3482-3484. (1998).

DOI: 10.1063/1.121673

Google Scholar

[25] T Buonassisi, AA Istratov, MD Pickett: Transition metals in photovoltaic-grade ingot-cast multicrystalline silicon Journal of Crystal Growth In The 16th American Conference on Crystal Growth and Epitaxy - ACCGE 16, Vol. 287, No. 2., pp.402-407.

DOI: 10.1016/j.jcrysgro.2005.11.053

Google Scholar