Submicron Tungsten Powder Prepared through the Circulatory Oxidization-Reduction Method

Article Preview

Abstract:

Tungstic oxide is prepared with pure ammonium paratungstate in the air. And then Tungsten powder is obtained with tungstic oxide through deoxidation in the hydrogen gas (Rate of purity: 99.99 %, dew point: -40 °C), and tungsten powder is oxidized in the air. Tungstic oxide is reduced into tungsten powder in the hydrogen gas. The above routes are repeated. The samples are characterized by the laser particle size distribution measuring instrument and the electron probe scan instrument. The results show that submicron tungsten powder is obtained through circulatory oxidation twice and reductiuon three times. The volume percentage of the particle size distribution of submicron tungsten powder between 0.1 μm and 0.5 μm is 94.81 %.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 228-229)

Pages:

283-287

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. D. Cai, Y. Li, R. J. Dowding, F. A. Mohamad and E. J. Lavernia: Reviews in Particulate Materials, Vol. 3 (1995), p.71.

Google Scholar

[2] K. C. Cho, R. H. Woodman, B. R. Klotz and R. J. Dowding: Materials and Manufacturing Processes, Vol. 19 (2004), p.619.

Google Scholar

[3] A. Mondal, A. Upadhyaya and D. Agrawal: Int. Journal of Refractory Metals and Hard Materials, Vol. 28 (2010), p.597.

Google Scholar

[4] O. V. Tolochko, O. G. Klimova, S. S. Ordanian, D. I. Cheong and Y. M. Kim: Rev. Adv. Mater. Sci., Vol. 21 (2009), p.192.

Google Scholar

[5] C. N. J. Wanger, E. Yang E and M. S. Boldrick: Nanostuct. Mater., Vol. 7 (1996), p.1.

Google Scholar

[6] W. D. Schubert: Proceedings of the 12th Plansee-Seminar, Vol. 4 (1989), p.41.

Google Scholar

[7] P. S. Patil, P. R. Patil, L. D. Kadam and S. H. Pawar: Bull. Electrochem, Vol. 15 (1999), p.307.

Google Scholar

[8] M. Suvanto, J. Raty and T. A. Pakkanen: Catal. Lett., Vol. 62 (1999), p.21.

Google Scholar

[9] S. T. Li and M. S. El-Shall: Nanostruct. Mater., Vlo. 12 (1999), p.215.

Google Scholar

[10] M. Sun, N. Xu, J. W. Cao, J. N. Yao and E. C. Wang: J. Mater. Res., Vol. 15 (2000), p.927.

Google Scholar

[11] L. H. M. Krings and W. Talen: Sol. Energy Mat. Sol. Cells, Vol. 54 (1998), p.27.

Google Scholar

[12] B. Munro, S. Kramer, P. Zapp and H. Krug: J. Sol-Gel Sci. Technol., Vol. 13 (1998), p.673.

Google Scholar

[13] Y. Tamou and S. Tanaka: Nanostruct. Mater., Vol. 12 (1999), p.123.

Google Scholar

[14] F. B. Li, G. B. Gu, X. J. Li and H. F. Wan: Acta Phys. Chim. Sinica, Vol. 16 (2000), p.997.

Google Scholar