The Light-Sensitive Character of WO3 Nanorods Synthesized by the Hydrothermal Method

Article Preview

Abstract:

Crystalline WO3 nanorods of less than 100 nm in diameter have been successfully synthesized at 240 °C for 72.0 h with pH=1.5 in the system of strong acid with sodium tungstate and potassium sulphate by the hydrothernal method. The morphologies and structures of WO3 rods have been characterized and analyzed by XRD, SEM, TEM and SAED. SEM confirmed that the slenderness ratio of WO3 rods was enlarged with the increase of t the pH value and the reaction time. SAED analysis showed that the crystal morphology of the synthesiezed WO3 nanorods was crystallin. UV-VIS results showed that the absorbent power of UV light for WO3 nanorods enhanced with the increase of their slenderness ratio.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 228-229)

Pages:

29-33

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. XU, M. SUN, Y. W. CAO, J. N. Yao and E. G. Wang: Appl. Surf. Sci., Vol. 1-2 (2000), p.81.

Google Scholar

[2] R. Bussjager, J. Chaiken, M. Getbehead, D. Grusza, D. Hinkel, T. Mcewen, J. Osman and E. Voss: Jpn. Appl. Phys., Part 1, Vol. 39 (2000), p.789.

DOI: 10.1143/jjap.39.789

Google Scholar

[3] M. Sun, N. Xu, J. W Cao, J. N. Yao and E. C. Wang: J. Mate. Res., Vol. 12 (2000), p.927.

Google Scholar

[4] T. L. Royster, D. Chatterjee, G. R. Paz-pujalt and C. A. Marrese: Sens. Actuators B: Chemical, Vol. 53 (1998), p.155.

Google Scholar

[5] D. S. Lee, K. H. Nam and D. D. Lee: Thin Solid Films, Vol. 375 (2000), p.142.

Google Scholar

[6] B. P. Jelle and G. Hagen: Sol. Energy Mat. Sol. Cells, Vol. 58 (1999), p.277.

Google Scholar

[7] E. M. Girotto and M. A. D. Paoli: J. Braz. Chem. Soc., Vol. 10 (1999), p.394.

Google Scholar

[8] C. G. Granqvist: Sol. Energy Mat. Sol. Cells, Vol. 60 (2000), p.201.

Google Scholar

[9] C. Trimble, M. Devries, J. S. Hale, D. W. Thompson, T. E. Tiwald and J. A. Woollam: Thin Solid Films, Vol. 356 (1999), p.26.

DOI: 10.1016/s0040-6090(99)00439-3

Google Scholar

[10] K. H. Lee, Y. K. Fang, W. J. Lee, J. J. Ho, K. H. Chen and K. S. Liao: Sens. Actuators: B, Vol. 69 (2000), p.96.

Google Scholar

[11] E. Llobet, G. Molas, P. Molinas, J. Calderer, X. Vilanova, J. Brezmes, J. E. Sueiras and X. Correig: J. Electrochem Soc., Vol. 147 (2000), p.776.

DOI: 10.1149/1.1393270

Google Scholar

[12] C. Cantalini, W. Wlodarski, M. Passacantando, S. Santucci, E. Comini, G. Faglia and G. Sberveglieri: Sens. Actuators: B, Vol. 64 (2000), p.182.

DOI: 10.1016/s0925-4005(99)00504-3

Google Scholar

[13] W. M. Qu and W. Wlodarski: Sens. Actuators: B, Vol. 64 (2000), p.42.

Google Scholar

[14] F. B. Li, G. B. Gu, X. J. Li and H. F. Wan: Acta Phys. Chim. Sinica, Vol. 16 (2000), p.997.

Google Scholar

[15] S. Anders, A. Anders, M. Rubin, Z. Wang, S. Raoux, F. Kong and I. G. Brown: Surf. Coat. Technol., Vol. 76 (1995), p.167.

Google Scholar

[16] M. Suvanto, J. Raty and T. A. Pakkanen: Catal. Lett., Vol. 62 (1999), p.21.

Google Scholar

[17] Z. R. Yu, X. D. Jia, J. H. Du and J. Y. Zhang: Sol. Energy Mat. Sol. Cell., Vol. 64 (2000), p.55.

Google Scholar

[18] M. J. Okeefe, J. T. Grant and J. S. Solomon: J. Electron. Mater., Vol. 24 (1995), p.961.

Google Scholar

[19] L. H. M Krings and W. Talen: Sol. Energy Mat. Cells., Vol. 54 (1998), p.27.

Google Scholar

[20] Y. Tamou and S. Tanaka: Nanostruct. Mater., Vol. 12 (1999), p.123.

Google Scholar

[21] N. Kumagai, K. Kozawa, N. Kumagai, S. Komaba and A. Derja: Denki Kagaku, Vol. 66 (1998), p.1223.

DOI: 10.5796/kogyobutsurikagaku.66.1223

Google Scholar

[22] K. Huang, Q. Zhang, F. Yang and D. Y. He: Nano. Res., Vol. 3 (2010), p.281.

Google Scholar