Enhanced Performance of ZnO-Coated LiNi0.5Mn1.5 O4 Cathode Materials for Li-Ion Battery

Article Preview

Abstract:

ZnO-coated LiNi0.5Mn1.5O4 cathode materials for Li-ion batteries have been synthesized. Samples were characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD) and charge-discharge tests. The results of XRD and scanning electron microscopy (SEM) showed the ZnO-coating was nano-sized, and the LiNi0.5Mn1.5O4 powder exhibits a typical cubic spinel structure with a space group of Fd3m. Electrochemical tests demonstrate that the ZnO-coated sample obtained possesses high capacity and excellent cycling stability compared with the as-prepared LiNi0.5Mn1.5O4. When being discharged at a rate of 1C after 50 cycles, the ZnO-coated LiNi0.5Mn1.5O4 powders can still deliver a capacity of 115.5 mAh•g-1, with nearly no capacity fading, which shows to be a potential cathode material for high-energy density power batteries.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 228-229)

Pages:

514-518

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.M. Thackeray, P.G. David, P.G. Bruce and J.B. Goodenough: Mater. Res. Bull. Vol. 18 (1983), p.461.

Google Scholar

[2] D. Guyomard and J. -M. Tarascon: J. Electrochem. Soc. Vol. 139 (1992), p.937.

Google Scholar

[3] S.H. Park, K.S. Park, Y. -K. Sun and K.S. Nahm: J. Electrochem. Soc. Vol. 147 (2000), p.2116.

Google Scholar

[4] Q. Zhong, A. Banakdarpour, M. Zhang, Y. Gao and J.R. Dahn: J. Electrochem. Soc. Vol. 144 (1996), p.205.

Google Scholar

[5] F. Joho and P. Novak: Electrochim. Acta Vol. 45 (2000), p.3589.

Google Scholar

[6] T. Ohzuku, J. Kato, K. Sawai and T. Hirai: J. Electrochem. Soc. Vol. 138 (1991), p.2556.

Google Scholar

[7] Y. -K. Sun, K. -J. Hong, J. Prakash and K. Amine: Electrochem. Commun. Vol. 4 (2002), p.344.

Google Scholar

[8] H. Shigemura, H. Sakaebe, H. Kageyama, H. Kobayashi, A.R. West, R. Kanno, S. Morimoto, S. Nasu and M. Tabuchi: J. Electrochem. Soc. Vol. 148 (2001), p. A730.

DOI: 10.1149/1.1377593

Google Scholar

[9] H. Kawai, M. Nagata, H. Tukamoto, H. Kageyama and A.R. West: Electrochim. Acta Vol. 45 (1999), p.315.

Google Scholar

[10] Y. -P. Fu, Y. -H. Su and C. -H. Lin: Solid State Ionics Vol. 166 (2004), p.137.

Google Scholar

[11] S. W. Oh, S. H. Park and C. -W. Park: Solid State Ionics Vol. 171 (2004), p.167.

Google Scholar

[12] A. Eftekhari: Electrochimica Acta Vol. 48 (2003), p.2831.

Google Scholar

[13] R. Alc´antara, M. Jaraba, P. Lavela and J. L. Tirado: J. Electroanal. Chem. Vol. 566 (2004), p.187.

Google Scholar

[14] A. Eftekhari: Chem. Lett. Vol. 33 (2004), p.616.

Google Scholar

[15] A. Schechter, D. Aurbach and H. Cohen: Langmuir Vol. 15 (1999), p.3334.

Google Scholar

[16] D. Aurbach, K. Gamolsky, B. Markovsky, G. Salitra, Y. Goger, U. Heider, R. Oesten and M. Schmidt: J. Electrochem. Soc. Vol. 147 (2000), p.1322.

DOI: 10.1149/1.1393357

Google Scholar

[17] K. Edstr¨om, T. Gustafsson and J.O. Thomas: Electrochim. Acta Vol. 50 (2004), p.397.

Google Scholar

[18] Y.K. Sun, K.J. Honga, J. Prakash and K. Amine: Electrochem. Commun. Vol. 4 (2002), p.344.

Google Scholar