Solvothermal Synthesis and Electrochemical Properties of Hairball-Like Bismuth Trisulphide Microcrystallines

Article Preview

Abstract:

Hairball-like bismuth trisulphide microcrystallines has been successfully prepared via one step solvothermal process and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) techniques. The morphologies of the Bi2S3 microcrystallines were influenced by reaction time, temperature, the mole ratio of the reactants and concentration of starting materials, and the growth process has been proposed. The electrochemical behavior of Bi2S3 was investigated using the cyclic voltammetry.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

2289-2293

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.A. Ozin, A.C. Arsenault, L. Cademartiri: Nanochemistry: A Chemical Approach to Nanomaterials 2nd ed. (Royal Society of Chemistry, Cambridge 2009).

Google Scholar

[2] X. Yu, C. Cao: Cryst. Growth Des. vol. 8 (2008), p.3951

Google Scholar

[3] Y. Cui, C.M. Lieber: Science, vol. 291 (2001), p.851

Google Scholar

[4] P.C. Collins, M.S. Arnold, P. Avouris: Science vol. 292 (2001), p.706

Google Scholar

[5] D. Ma, C.S. Lee, F.C Au, S.Y. Tong, S.T. Lee: Science vol.299 (2003), p.1874

Google Scholar

[6] X.F. Duan, Y. Huang, R. Agarwal, C.M. Lieber: Nature vol. 421 (2003), p.241

Google Scholar

[7] N.A. Goriunova, B.T. Kolomiets, A.A. Malkova: Phys. Technol. Phys. vol. 1 (1956), p.1583

Google Scholar

[8] R. Suarez, P.K. Nair, P. V. Kamat: Langmuir vol. 14 (1998), p.3236

Google Scholar

[9] G. Hodes, J. Manassen, D. Cahen: Nature vol. 261 (1976), p.403

Google Scholar

[10] B. Chen, C. Uher: Chem. Mater. vol. 9 (1997), p.1655

Google Scholar

[11] J.M Zhu, K Yang, J.J Zhu, G.B. Ma, X.H. Zhu, S.H. Zhou: Opt. Mater. vol. 23 (2003), p.89

Google Scholar

[12] O. Rabin, J.M. Perez, J. Grimm, G. Wojtkiewicz, R. Weissleder: Nat. Mater. vol. 5 (2006), p.117

Google Scholar

[13] M.W. Shao, M.S. Mo, Y. Cui: J. Cryst. Growth vol. 233 (2001), p.799

Google Scholar

[14] D.B. Wang, M.W. Shao: J. Cryst. Growth vol. 254 (2003), p.487

Google Scholar

[15] G.Z. Shen, D. Chen, K.B. Tang: Chem. Phys. Lett. vol. 370 (2003), p.334

Google Scholar

[16] P. Boudjouk, M.P. Remington Jr., D.G. Grier: Inorg. Chem. vol. 37 (1998), p.3538

Google Scholar

[17] N.S. Yesugade, C.D. Lokhande, C.H. Bhosale: Thin Solid Films vol. 263 (1995), p.145

DOI: 10.1016/0040-6090(95)06577-6

Google Scholar

[18] S.Y. Wang, Y.W. Du: J. Cryst. Growth vol. 236 (2002), p.627

Google Scholar

[19] X.H. Liao, H. Wang, J.J. Zhu: Mater. Res. Bull. vol. 36 (2001), p.2339

Google Scholar

[20] Y. Jiang, Y. Zhu, Z. Xu: Mater. Lett. vol. 60 (2006), p.2294

Google Scholar

[21] B. Zhang, X. Ye, W. Hou, Y. Zhao, and Y. Xie: J. Phys. Chem. B vol. 110 (2006), p.8978

Google Scholar

[22] J. Lu, Q. Han, X. Yang, L. Lu, X. Wang: Materials Letters vol. 61 (2007), p.2883

Google Scholar

[23] Z. Quan, J. Yang, P. Yang, Z. Wang, C. Li, and J. Lin: Cryst. Growth Des. vol. 8 (2008), p.200

Google Scholar

[24] D. Wang, M. Shao, D. Yu: J. Cryst. Growth vol. 243 (2002), p.331

Google Scholar

[25] J. Chen, N. Kuriyama, H. Yuan, H.T. Takeshita, T. Sakai: J. Am. Chem. Soc. vol. 123 (2001), p.11813

Google Scholar

[26] X. Chen, X.P. Gao, H. Zhang, Z. Zhou, W.K. Hu, G.L. Pan, H.Y. Zhu, T.Y. Yan, D.Y. Song: J. Phys. Chem. B vol. 109 (2005), p.11525

Google Scholar