Ferrous Ion Oxidation Behavior on a Bacteria Attached Power Micro Electrode

Article Preview

Abstract:

In this paper a special At.f (Acidthiobacillus ferrooxidans) modified carbon powder microelectrode was prepared, and a series of electrochemical measurements were conducted to study ferrous ion Fe2 + oxidation mechanism on the electrode. CV (cyclic voltammetry) studies show that this oxidation reaction is reversible when c (Fe2 +) is lower than 0.16mol/L. At higher speed scanning, the currents through the electrode include two parts of the micro disc current and the thin layer current, while at lower speed scanning of steady state process the current provided by thin layer could be ignored, the whole oxidation reaction was controlled by diffusion process, and the calculated diffusion coefficient D0 is about 6. 25 ×10 - 6cm2.s – 1. The transient potential stair step studies also have been conducted. The results are consistence with steady state ones although thin layer currents should be taken in to account.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

2699-2704

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Pradhan, K.C. Nathsarma, K. Srinivasa Rao, L.B. Sukla and B.K. Mishra: Minerals Engineering, vol. 21, (2008), pp.355-365

DOI: 10.1016/j.mineng.2007.10.018

Google Scholar

[2] G.Z. Qiu, X.D. Liu and H.B. Zhou: Transactions of Nonferrous Metals Society of China, vol. 18, (2008), pp.1295-1301

Google Scholar

[3] R. Jain, A. Pathak, T.R. Sreekrishnan and M.G. Dastidar: J. Environmental Sciences, vol. 22, (2010), P.230-236

Google Scholar

[4] L.G. Leduc and G.D. Ferroni:FEMS Microbiology Reviews, vol.14, (1994), pp.103-119

Google Scholar

[5] S.J. Ferguson and W.J. Ingledew: Biochimica et Biophysica Acta (BBA) Bioenergetics, vol.1777, (2008), pp.1471-1479

DOI: 10.1016/j.bbabio.2008.08.012

Google Scholar

[6] J.Y. Yu, T.J. McGenity and M.L. Coleman:Chemical Geology, vol. 175, (2001), pp.307-317

Google Scholar

[7] H. Tributsch: Hydrometallurgy, vol.59, (2001), P.177-185

Google Scholar

[8] A.B. Jensen and C. Webb: Process Biochemistry, vol.48, (1996), pp.147-15218

Google Scholar

[9] H.L. Liu, F.C. Yang, H.Y. Lin, C.H. Huang, H.W. Fang, W.B. Tsai and Y.C. Cheng: Chemical Engineering Journal, vol.137,( 2008), P. 231-237

Google Scholar

[10] A. Das, S. Bhattacharyya and P.C. Banerjee: Journal of Microbiological Methods, vol.10, (1989), pp.281-287

Google Scholar

[11] Hong-mei Li and Jia-jun Ke:Hydrometallurgy, vol.61, (2001), pp.151-156

Google Scholar

[12] G. Curutchet and E. Donati: J. Bioscience and Bioengineering, vol. 90, (2000), P.57-6

Google Scholar

[13] C. S .Cha and C. M. Li: J. Electro analytical Chemistry, vol. 368, no.1-2, (1994) pp.47-54

Google Scholar

[14] V. Vivier, C. S. Cha, J. Y. Nedelec and L. T. Yu: Electrochimica Acta, vol. 47,no. 1-2, pp.181-189,September (2001)

Google Scholar

[15] M. Sánchez, J. Gamby, H. Perrot, D. Rose and V. Vivier: Electrochemistry Communications, vol.12, (2010), pp.1230-1232

DOI: 10.1016/j.elecom.2010.06.026

Google Scholar

[16] Alan M. Bond, Keith B. Oldham and Cynthia G. Zoski: Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 245, (1988), pp.71-104

DOI: 10.1016/0022-0728(88)80060-3

Google Scholar