Numerical and Experimental Analysis of Anisotropic Shrinkage during Sintering

Article Preview

Abstract:

With a view of simulating the dimensional changes during sintering of rectangle green bodies, the thermo-mechanical behavior of zirconium powder compacts at high temperature is investigated. In order to better describe the behavior of anisotropic shrinkage, the revised Master Sintering Curve is modified. Finite element calculations are then carried out on the green body according to the modified equation with the different shrinkages coefficients at the different stages of sintering. The possible causes of the anisotropic shrinkage are explained by macro-surface energy model. Numerical shape predictions have been compared with experimental data, which are considered to be in good agreement.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

3068-3073

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.C. Agarwal: Adv. Ceram. Mater. Vol. 1 (1986), p.32

Google Scholar

[2] J. Frenkel: J. Phys (USSR). Vol. 9 (1945), p.385

Google Scholar

[3] G.C. Kuczynski: Met. Trans. Vol. 185 (1949), p.896

Google Scholar

[4] R.L. Coble: J. Appl. Phys. Vol. 32 (1961), p.787

Google Scholar

[5] W.D. Kingery and M. Berg: J. Appl. Phys. Vol. 26 (1955), p.1205

Google Scholar

[6] J.K. Mackenzie and R. Shuttleworth: Proc. Phys. Soc. Sec. B. Vol. 62 (1949), p.833

Google Scholar

[7] H. Su and D.L. Johnson: J. Am. Ceram. Soc. Vol. 79 (1996), p.3211

Google Scholar

[8] W.Q. Shao, S.O. Chen, D. Li, H.S. Cao, Y.C. Zhang and S.S. Zhang: Sci. Sinter. Vol. 40 (2008), p.251

Google Scholar

[9] J.S. Sung, K. D. Kood and J.H. Park: J. Am. Ceram. Soc. Vol. 82 (1999), p.537

Google Scholar

[10] P.M. Raj and W.R. Cannon: J. Am. Ceram. Soc. Vol. 82 (1999), p.2619

Google Scholar

[11] D.S. Park and C.W. Kim: J. Mater. Sci. Vol. 34 (1999), p.5827

Google Scholar

[12] A. Shui and N. Uchida: Powder. Technol. Vol. 127 (2002), p.9

Google Scholar

[13] F. Toussaint and D. Bouvard: J. Mater. Process. Tech. Vol. 147 (2004), p.72

Google Scholar

[14] O. Gillia and D. Bouvard: Adv. Powder. Metall. Part. Mater. Vol. 2 (1996), p.739

Google Scholar

[15] S. Kiani, J. Pan and J.A. Yeomans: J. Am. Ceram. Soc. Vol. 89 (2006), p.3393

Google Scholar

[16] A. Jagota, P.R. Dawson and J.T. Jenkins: Mech. Mater. Vol. 7 (1988), p.255

Google Scholar

[17] H.G. Kim, O. Gillia, P. Doremus and D. Bouvard: Int. J. Mech. Sci. Vol. 44 (2002), p.2523

Google Scholar

[18] O. Lame, D. Bouvard and H. Wiedemann: Powder. Metall. Vol. 45 (2002), p.181

Google Scholar

[19] A. Zavaliangos, J.M. Missiaen and D. Bouvard: Sci. Sinter. Vol. 38 (2006), p.13

Google Scholar

[20] F. Wakai and T. Akatsu: Acta. Mater. Vol. 58 (2010), p. (1921)

Google Scholar