Adsorption of Chloride Anion from Aqueous Solution by Calcined (Mg-Al) Hydrotalcites of Different Mg/Al Ratio

Article Preview

Abstract:

Hydrotalcites (HT-X) of different Mg/Al ratio (X is Mg/Al molar ratio, 3 and 4) was synthesized by co-precipitation method. Calcined HTLCs (CHT-X) at 500°C have been shown to recover their original layered structure by taking up chloride ion from aqueous solution. Adsorption of chloride by CHT-X was investigated in batch mode. The kinetics study showed that the pseudo-second-order kinetics model could be used to describe the adsorption process satisfactorily. The equilibrium isotherm showed that the Langmuir model gave a better fit to the experimental data than the Freundlich model. The maximum adsorption capacity of CHT-3 was 83.33 mg/g; CHT-4 was 90.09 mg/g .The samples of different Mg/Al ratio have different crystallite size, thus showing different adsorption capacity. As the Mg/Al ratio increases from 3 to 4; the electric charge density between the layers becomes weaker; the interlayer spacing increases; the sample shows greater adsorption capacity. The HT-X where characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electron dispersive X-ray analysis (EDX).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

420-426

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Kameda, Y. Miyano, T. Yoshioka, M. Uchida and A. Okuwaki. Chem. Lett. Vol. 29 (2000), p.1136.

Google Scholar

[2] T. Kameda, F. Yabuuchi, T. Yoshioka, M. Uchida and A. Okuwaki. Water Res. Vol. 37 (2003), p.1545.

Google Scholar

[3] T. Kameda, T. Yoshioka, T. Mitsuhashi, M. Uchida and A. Okuwaki. Water Res. Vol. 37(2003), p.4045.

Google Scholar

[4] M.F. Hamoda and I.M.S. Al-Attar. Effects of high sodium chloride concentration on activated sludge treatment. Water Sci. Technol. Vol. 31 (1995), p.61.

DOI: 10.2166/wst.1995.0345

Google Scholar

[5] T. Panswad and C. Anan. Water Res. Vol. 33 (1999), p.1165.

Google Scholar

[6] Liang Lv, Jing He, Min Wei, D.G. Evans and Xue Duan. Water Res. Vol. 40 (2006), p.735.

Google Scholar

[7] F. Cavani, F. Trifiro and A. Vaccari. Catal. Today Vol. 11 (1991), p.173.

Google Scholar

[8] V. Rives and M.A. Ulibarri. Coord. Chem. Rev.Vol. 181(1999), p.60.

Google Scholar

[9] Ewa M. Serwicka and Krzysztof Bahranowski. Catal. Today Vol. 90 (2004), p.85.

Google Scholar

[10] Ramesh Chitrakar, Satoko Tezuka, Akinari Sonoda, Kohji Sakane, Kenta Ooi and Takahiro Hirotsu. J Colloid and Interf. Sci. Vol. 290 (2005), p.45.

DOI: 10.1016/j.jcis.2005.04.025

Google Scholar

[11] G.P. Gillman. Sci. Total. Environ. Vol. 366(2006), p.926.

Google Scholar

[12] S. Lagergren. K. Sven. Vetenskapsakad. Handl. Band Vol. 24 (1898), p.1.

Google Scholar

[13] Y.S. Ho and G. Mckay, Chem. Eng. J. Vol. 70(1998), p.115.

Google Scholar

[14] Y.S. Ho, J.C.Y. Ng, G. McKay, Sep. Purif. Meth. Vol. 29(2000), p.189.

Google Scholar

[15] N.I. Chubar, V.F. Samanidou, V.S. Kouts, G.G. Gallios, V.A. Kanibolotsky, V.V. Strelko and I.Z. Zhuravlev. J Colloid Interf. Sci. Vol. 291 (2005), p.67.

DOI: 10.1016/j.jcis.2005.04.086

Google Scholar

[16] C. Namasivayam and S. Sumithra. Ind. Eng. Chem. Res. Vol. 43(2004), p.7581.

Google Scholar

[17] N. Das, R. Das, Appl. Clay Sci. Vol. 42 (2008), p.90.

Google Scholar

[18] A. Vaccari, Catal. Today Vol. 41 (1998), p.53.

Google Scholar