Pseudo-Homogenous Kinetics Model for the Synthesis of Dimethyl Carbonate from Urea and Methanol with Heterogeneous Catalyst

Abstract:

Article Preview

The synthesis of dimethyl carbonate (DMC) from urea and methanol includes two main reactions: one amino of urea is substituted by methoxy to produce the intermediate methyl carbamate (MC) which further converts to DMC via reaction with methanol again. In a stainless steel autoclave, the kinetics of these reactions was separately investigated without catalyst and with Zn-containing catalyst. Without catalyst, for the first reaction, the reaction kinetics can be described as first order with respect to the concentrations of methanol and methyl carbamate (MC), respectively. For the second reaction, the results exhibit characteristics of zero-order reaction. Over Zn-containing catalyst, the first reaction is neglected in the kinetics model since its rate is much faster than second reaction. After the optimization of reaction condition, the macro-kinetic parameters of the second reaction are obtained by fitting the experimental data to a pseudo-homogenous model, in which a side reaction of DMC synthesis is incorporated since it decreases the yield of DMC drastically at high temperature. The activation energy of the reaction from MC to DMC is 104 KJ/mol while that of the side reaction of DMC is 135 KJ/mol.

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Edited by:

Zhong Cao, Lixian Sun, Xueqiang Cao, Yinghe He

Pages:

481-486

DOI:

10.4028/www.scientific.net/AMR.233-235.481

Citation:

W. B. Zhao et al., "Pseudo-Homogenous Kinetics Model for the Synthesis of Dimethyl Carbonate from Urea and Methanol with Heterogeneous Catalyst", Advanced Materials Research, Vols. 233-235, pp. 481-486, 2011

Online since:

May 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.