Photocatalytic Reduction of CO2 Using Cu/S-TiO2 Prepared by Electroless Plating Method

Article Preview

Abstract:

The photocatalytic reduction of CO2 could be achieved over Cu/S-TiO2 under UV and visible light irradiation. S-TiO2 was fabricated via calcination of TiO2 precursor and thiourea, Cu species were plated on the surface of S-TiO2 by electroless plating method. XRD revealed that S-TiO2 was anatase phase, UV-Vis absorption spectrum showed an excellent visible light absorption of Cu/S-TiO2. Cu species plated on S-TiO2 by electroless plating method could facilitate the photogenerated charges capture, separation and transfer. The products of CO2 photocatalytic reduction involved gas phase of methane, carbon monoxide and hydrogen, and liquid phase of methanol, formic acid and acetic acid. The in-situ IR spectra indicated that the OH radical acted as an intermediate participating in the photocatalytic reaction.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

589-595

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.R.M. Abu-Zahra, L.H.J. Schneiders, J.P.M. Niederer, P.H.M. Feron, G.F. Versteeg: Int. J. Greenhouse Gas Control: Vol. 1 (2007), p.37

DOI: 10.1016/s1750-5836(06)00007-7

Google Scholar

[2] I-Hsiang Tseng, Wan-Chen Chang, Jeffrey C.S. Wu: Appl. Catal., B Vol. 37 (2002), p.37

Google Scholar

[3] Gabriele Centi, Siglinda Perathoner: Catal. Today: Vol. 148 (2009), p.191

Google Scholar

[4] Satoshi Kaneco, Hideyuki Katsumata, Tohru Suzuki, Kiyohisa Ohta: Appl. Catal., B Vol. 64 (2006), p.139

Google Scholar

[5] M. Gattrell, N. Gupta, A. Co: J. Electroanal. Chem. Vol. 594 (2006) p.1

Google Scholar

[6] O. K. Varghese, M. Paulose, T. J. LaTempa, C. A. Grimes: Nano Lett. Vol. 9 (2009) p.731

Google Scholar

[7] G. Centi, S. Perathoner, G. Wine, M. Gangeri: Green Chem. Vol. 9 (2007), p.671

Google Scholar

[8] Xiaobo Chen, Samuel S. Mao: Chem. Rev. Vol. 107 (2007), p.2891

Google Scholar

[9] Hsin-Fu Chang, Mohammed Abu Saleque, Wen-Su Hsu, Wen-Hsiung Lin: J. Mol. Catal. A: Chem. Vol. 109 (1996), p.249

Google Scholar

[10] T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura: Appl. Catal. A Vol. 265 (2004), p.115

Google Scholar

[11] Tao Chen, Zhaochi Feng, Guopeng Wu, Jianying Shi, Guijun Ma, Pinliang Ying, Can Li: J. Phys. Chem. C Vol. 111 (2007), p.8005

Google Scholar

[12] B. Cullity: Elements of X-ray Diffraction, Addison-Wesley, Reading, MA, 1987, p.294.

Google Scholar

[13] Shiping Xu, Jiawei Ng, Xiwang Zhang, Hongwei Bai, Darren Delai Sun: Int. J. Hydrogen Energy Vol. 35 (2010), p.5254

Google Scholar

[14] Praliaud H, Mikhailenko S, Chajar Z, Primet M: Appl Catal B Vol. 16 (1998), p.359

Google Scholar

[15] K. Koˇcí, L. Obalová, L. Matˇejová, D. Plachá, Z. Lacny´, J. Jirkovsky´, O. Sˇolcová: Appl. Catal. B Vol.89 (2009), p.494

Google Scholar

[16] Nae-Lih Wu, Min-Shuei Lee: Int. J. Hydrogen Energy Vol. 29 (2004), p.1601

Google Scholar

[17] Chiara Deiana, Ettore Fois, Salvatore Coluccia, Gianmario Martra: J. Phys. Chem. C Vol. 114 (2010), p.21531

Google Scholar

[18] P. Du, A. Bueno-López, M. Verbaas, A.R. Almeida, M. Makkee, J.A. Moulijn, G. Mul: J. Catal. Vol. 260 (2008), p.75

Google Scholar

[19] T. Mizuno, K. Adachi, K. Ohta, A. Saji: J. Photochem. Photobiol. A: Chem. Vol. 98 (1996), p.87

Google Scholar