Transparent Poly(methyl methacrylate)/TiO2 Nanocomposites for UV-Shielding Applications

Article Preview

Abstract:

Transparent poly(methyl methacrylate) (PMMA)/TiO2 nanocomposites have been prepared by solution mixing PMMA with organically soluble titania xerogel. The organically soluble titania xerogel in the form of amorphous phase has been synthesized via a simple sol-gel method, involving hydrolysis of tetrabutyl titanate (TBT) in trifluoroacetic acid (TFA) and gelation. The obtained PMMA/TiO2 nanocomposites were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM), thermogravimetry (TG) and ultraviolet-visible (UV-vis) absorption spectroscopy. The results showed that the interaction between titania nanoparticles and PMMA macromolecular chains led to a homogeneous dispersion of TiO2 in PMMA matrix. The resulting PMMA/TiO2 nanocomposites showed improved thermal stability, high transparency and high UV-shielding efficiency with a small amount of titania xerogel (£3.0 wt%). The present work is of interest for developing a series of transparent UV-shielding nanocomposites.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

1129-1136

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.T. Dinkova-Kostova, J.W. Fahey, A.L. Benedict, S.N. Jenkins, L.X. Ye, S.L. Wehage and P. Talalay: Photochem. Photobiol. Vol. 9 (2010), p.597.

DOI: 10.1039/b9pp00130a

Google Scholar

[2] R.G. Epp, D.J. Erickson, N.D. Paul and B. Sulzberger: Photochem. Photobiol. Vol. 6 (2007), p.286.

Google Scholar

[3] M.S. Ke, M.M. Camouse, F.R. Swain, S. Oshtory, M. Matsui, T. Mammone, D. Maes, K.D. Cooper, S.R. Stevens and E.D. Baron: Photochem. Photobiol. Vol. 84 (2008), p.180.

DOI: 10.1111/j.1751-1097.2007.00217.x

Google Scholar

[4] C.S. Sreevidya, A. Fukunaga, N.M. Khaskhely, T. Masaki, R. Ono, C. Nishigori and S.E. Ullrich: J. Invest. Dermatol. Vol. 130 (2010), p.1428.

DOI: 10.1038/jid.2009.329

Google Scholar

[5] Y.L. Zhuang, H. Hou, X. Zhao, Z.H. Zhang and B.F. Li: J. Food Sci. Vol. 74 (2009), p. H183.

Google Scholar

[6] J.F. Larche, P.O. Bussiere and J.L. Gardette: Polym. Degrad. Stabil. Vol. 95 (2010), p.1810.

Google Scholar

[7] I. Peternel, N. Koprivanac and H. Kusic: Water Res. Vol. 40 (2006), p.525.

Google Scholar

[8] E. Engel, F. Santarelli, R. Vasold, T. Maischl, H. Ulrich, B. Konig, M. Landthaler and W. Baumler: Allergologie. Vol. 30 (2007), p.309.

Google Scholar

[9] W.J. Kim, S.J. Kim, K.S. Lee, M. Samoc, A.N. Cartwright and P.N. Prasad: Nano Letters Vol. 8 (2008), p.3262.

Google Scholar

[10] A. Kikuchi, S. Yukimaru, N. Oguchi, K. Miyazawa and M. Yagi: Chem. Lett. Vol. 39 (2010), p.633.

Google Scholar

[11] M.L.B. Duarte, A.R. Jasso and N.S. Allen: J. Vinyl. Addit. Techn. Vol. 9 (2003), p.205.

Google Scholar

[12] S. Pavlidou and C.D. Papaspyrides: Prog. Polym. Sci. Vol. 33 (2008), p.1119.

Google Scholar

[13] K.B. Yoon, Y.Y. Hwang, S.K. Noh and D.H. Lee: Polym. J. Vol. 40 (2008), p.50.

Google Scholar

[14] J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf and I. Jasiuk: Mater. Sci. Eng. Vol. 393 (2005), p.1.

Google Scholar

[15] E.A. Zaragoza-Contreras, C.A. Hernandez-Escobar, M.E. Mendoza-Duarte, S.G. Flores-Gallardo, R. Ibarra-Gomez and A. Marquez-Lucero: Polym. J. Vol. 41 (2009), p.816.

DOI: 10.1295/polymj.pj2009090

Google Scholar

[16] J. Aarik, A. Aidla, A.A. Kiisler, T. Uustare and V. Sammelselg: Thin Solid Films Vol. 305 (1997), p.270.

DOI: 10.1016/s0040-6090(97)00135-1

Google Scholar

[17] H. Tang, F. Levy, H. Berger and P.E. Schmid: Phys. Rev. B Vol. 52 (1995), p.7771.

Google Scholar

[18] W.Y. Wang, J. Liu, X.B. Yu and G.Q. Yang: J. Nanosci. Nanotechno. Vol. 10 (2010), p.5196.

Google Scholar

[19] J.W. Kim, J.W. Shim, J.H. Bae, S.H. Han, H.K. Kim, I.S. Chang, H.H. Kang and K.D. Suh: Colloid Polym. Sci. Vol. 280 (2002), p.584.

Google Scholar

[20] J. Zhang, S.C. Luo and L.L. Gui: J. Mater. Sci. Vol. 32 (1997), p.1469.

Google Scholar

[21] M.M. Demir, P. Castignolles, U. Akbey and G. Wegner: Macromolecules. Vol. 40 (2007), p.4190.

Google Scholar

[22] S. Li, M.S. Toprak, Y.S. Jo, J. Dobson, D.K. Kim and M. Muhammed: Adv. Mater. Vol. 19 (2007), p.4347.

Google Scholar

[23] F.P. Rotzinger, J.M. Kesselman-Truttmann, S.J. Hug, V. Shklover and M. Gratzel: J. Phys. Chem. B Vol. 108 (2004), p.5004.

Google Scholar

[24] A.S. Foster and R.M. Nieminen: J. Chem. Phy. Vol. 121 (2004), p.9039.

Google Scholar

[25] P.G. Harrison and A. Guest: J. Chem. Soc. Vol. 87 (1991), p.1929.

Google Scholar

[26] G. Socrates and G.I.c.g.f. Socrates: Infrared and Raman characteristic group frequencies (Wiley, Chichester, 2001).

Google Scholar

[27] W.C. Chen, S.J. Lee, L.H. Lee and J.L. Lin: J. Mater. Chem. Vol. 9 (1999), p.2999.

Google Scholar

[28] L.E. Manring: Macromolecules. Vol. 24 (1991), p.3304.

Google Scholar

[29] M. Haase, H. Weller and A. Henglein: J. Phys. Chem. Vol. 92 (1988), p.482.

Google Scholar