Effects of Film Thickness on Microstructure and Ferroelectric Properties of Bi3.15Nd0.85Ti3O12 Thin Films Prepared by Sol-Gel Method

Article Preview

Abstract:

Bi3.15Nd0.85Ti3O12 (BNT) thin films with different thicknesses (200, 270, 360, 450 and 540 nm) were prepared on Pt/Ti/SiO2/Si substrates by sol–gel method. The effect of film thickness on the microstructure and ferroelectric properties of BNT thin films was investigated. All BNT thin films were consisted of a single phase of bismuth-layered perovskite structure. With increasing film thickness, grains gradually became larger, the remanent polarization (2Pr) firstly increased and then decreased, and the leakage current density showed opposite trend. The 360 nm-thick BNT film exhibited better electrical properties with 2Pr 26 µC/cm2, coercive field (2Ec) 220 kV/cm, dielectric constant 345 (at 1 MHz) and low leakage current density.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

1275-1278

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.F. Scott and C.A. Paz de Araujo: Science. Vol. 246 (1989), p.1400

Google Scholar

[2] K. Angus: Nature. Vol. 401 (1999), p.658

Google Scholar

[3] Y.H. Shin, I. Grinberg, I.W. Chen and A.M. Rappe: Nature. Vol. 449 (2007), p.881

Google Scholar

[4] B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee and W. Jo: Nature. Vol. 401 (1999), p.682

Google Scholar

[5] D.Y. Guo, B.C. Wang, Q. Shen, L.M. Zhang, M.Y. Li, J. Liu: Appl. Phys. Lett. Vol. 93 (2008), p.262907

Google Scholar

[6] M.S. Tomar, R.E. Melgarejo and S.P. Singh: Microelectron. J. Vol. 36 (2005), p.574

Google Scholar

[7] J.L. Pineda-Flores, E. Chavira, J. Reyes-Gasga, A.M. Gonzalez and A. Huanosta-Tera: J. Eur. Ceram. Vol. 23 (2003), p.839

Google Scholar

[8] D.Y. Guo, M.Y. Li, L. Pei, B.F. Yu, G.Z. Wu, X.Z. Zhao, Y.B. Wang and J. Yu: J. Phys. D: Appl. Phys. Vol. 39 (2006), p.5033

Google Scholar

[9] T. Watanabe, H. Funakubo, M. Osada, H. Uchida and I. Okada: J. Appl. Phys. Vol. 98 (2005), p.024110

Google Scholar

[10] D.Y. Guo, M.Y. Li, J. Liu, L. J. Fu, J. Wang, B. F. Yu and B. Yang: Mat. Sci. Eng.B-Solid. Vol.142 (2007), p.135.

Google Scholar

[11] R. E. Melgarejo, M. S. Tomar, S. Bhaskar, P. S. Dobal and R. S. Katiyar: Appl. Phys. Lett. Vol. 81 (2002), p.2611.

DOI: 10.1063/1.1511542

Google Scholar

[12] H. Matruda, S. Ito and I.Takashi: Appl. Phys. Lett. Vol. 83 (2003), p.5023

Google Scholar

[13] D.Y. Guo, L.M. Zhang, M.Y. Li, j. Liu and B.F. Yu: J. Am. Cream. Soc. Vol. 91 (2008), p.3280

Google Scholar

[14] H. Yang, N.A. Suvorova, M. Jain, B.S. Kang, Y. Li, M.E. Hawley, P.C. Dowden and C.J. Lu: Appl. Phys. Lett. Vol. 90(2007), p.232909

Google Scholar

[15] C.R. Cho, W.J. Lee, B.G. Yu and B.W. Kim: J. Appl. Phys. Vol. 86 (1999), p.2700

Google Scholar

[16] X.S. Gao and J. Wang: J. electroceram. Vol. 16 (2006), p.477

Google Scholar

[17] X.S. Gao and J.wang: J. Appl. Phys. Vol. 99 (2006), p.074103

Google Scholar

[18] M. Liao, X.L. Zhong, Y. Qiao, J.B. Wang, Y.C. Zhou and H. Liao: J. Alloys. Compd. Vol. 478 (2009), p.331.

Google Scholar

[19] K.T. Kim, S.H. Song and C.I. Kim: J. Vac. Sci. Technol. A. Vol. 22 (2004), p.1315

Google Scholar

[20] H. N. Lee, D. Hesse, N. Zakharov and U. Gosele: Science. Vol. 296 (2002), p. (2006)

Google Scholar

[21] G. D. Hu: J. Appl. Phys. Vol. 100 (2006), p.096109

Google Scholar

[22] G. D. Hu, S. H. Fan, and X. Cheng: J. Appl. Phys. Vol. 101 (2007), p.054111

Google Scholar

[23] J.S. Zhu, X.B. Zhang, Y.F. Zhu and S.B. Desu: J. Appl. Phys. Vol. 83 (1998), p.1610

Google Scholar