Influence of Sintering Temperature on the Electrochemical Performance of Sm0.5-XGdxSr0.5Co 3-δ/Gd0.1Ce0.9O1.95 Composite Cathode

Article Preview

Abstract:

In this paper, Sm0.5-xGdxSr0.5CoO3-δ (SGSC, x=0 and 0.2) powders were prepared using the solid-state reaction method. Their structure was identified by XRD. All powders formed the perovskite phase when calcined at 1100°C for 5 h. Sm0.3Gd0.2Sr0.5CoO3-δ/Gd0.1Ce0.9O1.95 slurries were screen printed onto both surfaces of Gd0.1Ce0.9O1.95 electrolyte and fired at different temperatures to fabricate the composite cathodes. The electrochemical property of the composite cathodes was characterized by the alternative current impedance spectroscopy. The impedance resistance of the composite cathodes increased with the increase of sintering temperature. For instance, the impedance resistance of the composite cathode fired at 1000 °C was 0.0875 Ω·cm2 at 700 °C, while it was 0.175 Ω·cm2 when fired at 1100 °C.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

1613-1616

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Q. Minh: Journal of the American Ceramic Society, Vol. 76 (3) (1993), p.563

Google Scholar

[2] S. Lü and G. Long: International Journal of Hydrogen Energy, Vol. 35 (2010), p.7930

Google Scholar

[3] N. P. Bansal and Z. Zhong: Journal of Power Sources. Vol. 158 (2006), p.148

Google Scholar

[4] N.P. Brandon, S. Skinner and B. C. H. Steele: Annual Review of Materials Research, Vol. 33 (2003), p.183

Google Scholar

[5] S. Wang and H. Zhong: Journal Power Sources, Vol. 165 (2007), p.58

Google Scholar

[6] J. A. Kilner, R. A. D. Souza R A and I. C. Fullarton: Solid State Ionics, Vol. 86-88 (1996), p.703

Google Scholar

[7] M. Mori, E. Suda, B. Pacaud, K. Murai and T. Moriga: J. Power Sources, Vol. 157 (2006), p.688

Google Scholar

[8] S. J. Lee, P. Muralidharan, S. H. Jo and D. K. Kim: Electrochemistry Communications, Vol. 12 (2010), p.808

Google Scholar

[9] H. Fukunaga, M. Koyama, N. Takahashi, C. Wen and K. Yamada: Solid State Ionics, Vol. 132 (2000), p.279

Google Scholar

[10] Y. M. Kim, Pattaraporn Kim-Lohsoontorn and Joongmyeon Bae: Journal of Power Sources, Vol. 195 (2010), p.6420

Google Scholar

[11] B. C. H. Steele: Solid State Ionics, Vol. 129 (2000), p.95

Google Scholar

[12] E. Maguire, B. Gharbage, F. M. B. Marques and J. A. Labrincha: Solid State Ionics, Vol. 127 (2000), p.329

Google Scholar

[13] V. Dusastre and J. A. Kilner: Solid State Ionics, Vol. 126 (1999), p.163

Google Scholar

[14] Z. Tang, Y. Xie, H. Hawthorne and D. Ghosh: Journal of Power Sources, Vol. 157 (2006), p.385

Google Scholar

[15] Y. Liu, W. Rauch, S. Zha and M. Liu: Solid State Ionics, Vol. 166 (2004), p.261

Google Scholar

[16] X. Song, C. Zhong, F. Zhou, X. Hao, G. Jia, S. An:ECS transactions, Vol. 25 (2) (2009), p.2607

Google Scholar

[17] D. Chen, R. Ran and Z. Shao: Journal of Power Sources, Vol. 195 (2010), p.4667

Google Scholar

[18] X, Song, S, An and W. Zhao: Journal of the Chinese Ceramic Society, Vol. 33 (3) (2005)

Google Scholar

[19] L. Nie, M. Liu, Y. Zhang and M. Liu: Journal of Powder Sources, Vol. 195 (2010), p.4704

Google Scholar

[20] X. Zhang, M. Pobertson and S. Yick: Journal of Power Sources, Vol. 160 (2006), p.1211

Google Scholar

[21] F. Zhou, C. Zhong, X. Song, X. Hao and S. An: Journal of the American Ceramic Society, Vol. 93 (2010), p.1551

Google Scholar

[22] S.W. Baek, J.Bae and Y. S. Yoo: Journal of Power Sources, Vol. 193 (2009), p.431

Google Scholar

[23] J. H. Kim, Y. N. Kim, S. M. Cho, H. Wang and A. Manthiram: Electrochimica Acta, Vol. 55 (2010), p.5312

Google Scholar

[24] T. Hibino, A. Hashimoto and Yanom: Journal of the Electrochemical Society, Vol. 146(2) (2002), p. A133

Google Scholar

[25] S. M. Choi, K. T. Lee, S. Kim, M. C. Chun and H. L. Lee: Solid State Ionics, Vol. 131 (2000), p.221

Google Scholar