Preparation of Super Absorbent Polymer by Carboxymethyl Cellulose Grafting Acrylic Acid Using Low-Temperature Plasma Treatment

Article Preview

Abstract:

Carboxymethyl cellulose (CMC) made from bagasse pulp was treated by low-temperature plasma, then reacted grafting polymerization with acrylic acid (AA) to produce super absorbent polymer. The effects of discharge power, plasma treatment time, initiator dosage, acrylic acid dosage, vacuum degree and neutralization ratio on water absorbency and grafting reaction time of the products were studied by single factor experiments. The best process parameters: discharge power = 250 W; plasma treatment time = 90s; m (K2S2O8) : m (CMC) (W/W) = 7:20; m (AA) : m (CMC) (W/W) = (1:9) ~ (1:8); vacuum degree = 300 Pa; neutralization degree = 40%, in which the distilled water absorbency of the product reached its maximum of 509 g/g and the grafting reaction time approached its minimum of 2min. This process has the advantages of simple operation, easy control, high grafting efficiency, short production cycle, low cost and so on, which meet the industrial production requirements of super absorbent polymer.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

2578-2583

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Shao, T. Wang: Guangdong Chemical Industry Vol. 37(2010), pp.251-253.

Google Scholar

[2] M. Q. Lu, X. Y. Chen, D. J. Wang, Y. L. Tang: Journal of Nuclear Agricultural Sciences Vol. 20(2006), pp.222-224.

Google Scholar

[3] Z. B. Chen, M. Z. Liu, S. M. Ma: Reactive and Functional Polymers Vol. 62(2005), pp.85-92.

Google Scholar

[4] Y. F. Li, X. Z. Li, L. C. Zhou, X. X. Zhu, B. N. Li: Polymers For Advanced Technologies Vol. 15(2004), p.3438.

Google Scholar

[5] S. H. Kim, J. H. Kim, B. K. Kang, e. al.: Langmuir Vol. 21(2005), pp.12213-12217.

Google Scholar

[6] J. Zhang, Z. G. Guo, B. G. Wang, e. al.: Journal of Chemical Industry arid Engineering Vol. 55(2004), pp.747-751.

Google Scholar

[7] F. S. Denes, M. S: Progress Polymer Science Vol. 29(2004), p.815.

Google Scholar

[8] S. F. Zhang, Y. D. Meng, Q. R. Qu, e. al.: Plasma Science Technology Vol. 7(2005), pp.2955-2958.

Google Scholar

[9] H. Y. Erbil, A. L. Demirel, Y. Avci, e. al.: Science Vol. 299(2003), pp.1377-1380.

Google Scholar

[10] M. G. Adsu, J. L. Ghule, R. Singh, e. al.: Carbohydrate Polymers Vol. 57(2004), pp.27-74.

Google Scholar

[11] K. S. Chen, H. R. Lin, S. C. Chen, e. al.: Polymer Journal Vol. 38(2006), pp.905-911.

Google Scholar

[12] J. Yang: Synthetic Techology And Application Vol. 23(2008), pp.22-25.

Google Scholar

[13] Q. F. Wei, Q. Li, X. Q. Wang, e. al.: Polymer Testing Vol. 25(2006), pp.717-722.

Google Scholar

[14] H. Ye, J. Q. Zhao, Y. H. Zhang: Journal of Applied Polymer Science Vol. 91(2004), pp.936-940.

Google Scholar

[15] S. M. Ma, M. Z. Liu, Z. B. Chen: J. Appl. Polym. Sci. Vol. 93(2004), pp.2532-2541.

Google Scholar

[16] Z. B. Chen, M. Z. Liu, X. H. Qi, e. al.: Electrochimica Acta Vol. 52(2007), pp.1839-1846.

Google Scholar

[17] J. P. Zhou, L. N. Zhang: Polymers Vol. 32(2003), pp.866-870.

Google Scholar