Preparation and Properties of Silicone Modified Epoxy Resin, Nano-TiO2 and Nano-TiO2/Micron-Al2O3 Polymer Alloys Putty

Article Preview

Abstract:

The epoxy resin-based polymer alloys putty modified by using silicone/nano-TiO2/MoS2 micron-particles and nm-TiO2/μm-Al2O3 composite particles were prepared at room temperature. Properties including hardness, friction and wear characteristics are analyzed by means of pin-on-disk testers, scanning electron microscopy (SEM). In addition, the influences of contents of organic silicone on the matrix were investigated via measuring the tensile strength and elongation, thermal stability and microstructure of the cured materials. The results showed that the tensile strength of the cured materials(mass ratio of epoxy resin to TSR144 is 1:1) is 59.12 MPa, elongation = 12.40%, and temperature of 50% weight loss is 414°C, higher than those of pure epoxy resin by 10.58 MPa, 5.59%, and 24°C respectively. Finally, its friction mechanism has been preliminarily discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

3009-3013

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.J. Wang, L.H. Perng, G.H. Hsiue, et al.: Polym. Vol. 41 (2000), pp.6113-6122

Google Scholar

[2] S.T. Lin, S.K. Huang: Journal of Polymer Science, Vol. 34 (1996), pp.1907-1922

Google Scholar

[3] S.T. Lin and S.K. Huang: Journal of Applied Polymer Science Vol. 62 (1996), pp.1641-1649

Google Scholar

[4] I. Díaz, B. Chico, D. Fuente, et al.: Prog. Org. Coat. Vol. 69 (2010), pp.278-286

Google Scholar

[5] S. Ahmad, A.P. Gupta, E. Sharmin, et al.: Prog. Org. Coat. Vol. 54 (2005), pp.248-255

Google Scholar

[6] L.A. Mercado, M. Galia`, J.A. Reina: Polym. Degra. Stab. Vol. 91 (2006), pp.2588-2594

Google Scholar

[7] S.A. Kumar, T. Balakrishnan, M. Alagar, et al.: Prog. Org. Coat. Vol. 55 (2006), pp.207-217

Google Scholar

[8] P.H. Sung, C.Y. Lin: Eur. Polym. J. Vol. 33 (1997), pp.903-906

Google Scholar

[9] Siddhartha, A. Patnaik, A.D. Bhatt.: Mater. Des. Vol. 32 (2011),pp.615-627

Google Scholar

[10] L. Chang, Z. Zhang, C. Breidt, et al.: Wear Vol. 258 (2005), pp.141-148

Google Scholar

[11] Y.F. Yang, G.S. Gai, S.M. Fan: Int. J. Miner. Process. Vol. 78 (2006), pp.78-84

Google Scholar

[12] X.B Chen and S.M. Samuel: Chem. Rev. Vol. 107 (2007), pp.2891-2959

Google Scholar

[13] Y. Juan, M. Sen, M.F. Jose: J. Col. Inerf. Sci. Vol. 12 (2004), pp.1-5

Google Scholar

[14] S. Watson, D. Beydoun, J. Scott, et al: J. Nano. Res. Vol. 6 (2004), pp.193-207

Google Scholar

[15] J. Yan, S.G. Du, H.P. Cui, et al.: Acta Metall. Sinica Vol. 43 (2007), p.388. (In Chinese)

Google Scholar

[16] E.M. Yotkgitis, G.L. Wilkes, J.E. McGmth: Polym. Mater. Sci. Eng. Vol. 49 (1983), pp.508-512

Google Scholar

[17] G. Tripathi and D. Srivastava: Mater. Sci. Eng. A Vol. 496 (2008), pp.483-493

Google Scholar