Buckling Behavior of FGM Elastic Arches Subjected to Uniformly Distributed Radial Follow Load

Article Preview

Abstract:

It is assumed that the material properties of arches vary with the thickness direction as a power function. Based on Kirchhoff’s assumption of straight normal line and the theory of axial extension and geometric nonlinearity, the in-plane buckling behavior of FGM elastic arches subjected to uniformly distributed radial follow loads is studied. In this paper, the governing equations for the nonlinear stability of FGM elastic arches are derived, the effect of composition parameters of FGMs, geometric parameters of arches and ends restraints on critical loads and balance configurations is investigated, and corresponding graphs are plotted.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

422-427

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. L. Pi, M. A. Bradford and B. Uy: Int. J.of Solids and Structures Vol. 39 (2002), p.105

Google Scholar

[2] M. A. Bradford, Y. L. Pi: Journal of Constructional Steel Research Vol 62 (2006), p.20

Google Scholar

[3] Y. L. Pi, M. A. Bradford and F. Tin-Loi: Int. J. of Solids and Structures Vol. 44 (2007), p.2401

Google Scholar

[4] M. A. Bradford, T.Wang, Y. L. Pi and R. I. Gilbert: J. Struct. Eng. Vol.133 (8) (2007), p.1130

Google Scholar

[5] T. Wang, M. A. Bradford and R. I. Gilbert: J. Struct. Eng. Vol. 133(8) (2007), p.1138

Google Scholar

[6] J. S. Ju, Y. L. Guo: Tsinghua Science and Technology Vol. 7(3) (2002), p.322

Google Scholar

[7] J. S. Ju, X. G. Jiang and J. Cheng: Engineering Mechanics Vol. 23(9) (2006), p.12

Google Scholar

[8] J. G. Wei, Q. X. Wu, B. C. Chen and T. L. Wang: J. Bridge Eng. Vol. 14(5) (2009), p.346

Google Scholar

[9] S. R. Li, X. Song and Y.H. Zhou: Engineering Mechanics Vol. 21(2) (2004), p.129

Google Scholar

[10] S. R. Li, F. X. Zhou: Chinese J. of Computational Mechanics Vol.25(1) (2008), p.25

Google Scholar

[11] Y. Song, F. Wang: J. of South China Uni. of Tech. (Natural Sci. Ed.) Vol. 37(12) (2009), p.140

Google Scholar

[12] T. J. Wang, L.S. Ma, Z.F. Shi: Chinese J. of Theoretical. Appl. Mech. Vol. 36(3) (2004), p.348

Google Scholar

[13] S. R. Li, J. H. Zhang and Y.G. Zhao: Appl. Math. Mech. Vol. 27(6) (2006), p.83

Google Scholar

[14] G. N. Praveen, J. N. Reddy: Int. J. of Solids and Structures Vol. 35(33) (1998), p.4457

Google Scholar

[15] J. Yang, H. S. Shen: J. of Sound and Vibration Vol. 255(3) (2002), p.579

Google Scholar

[16] H. Shafieea, M. H. Naeia and M-R Eslami: Int. J. of Mech. Sci. Vol. 48 (2006), p.907

Google Scholar