Study on the Degradation in Vitro of Ciprofloxacin-Polyurethane Materials

Article Preview

Abstract:

Bacterial induced infection is a major complication associated with the use of medical implants. Degradable antibacterial ciprofloxacin-polyurethanes (CFPU) have been synthesized in attempts to address this problem. It is supposed that the material may be sensitively hydrolyzed by inflammatory enzyme, cholesterol esterase (CE), and the drug could be released according to the state of infection. The enzyme biodegradation experiments showed an extra release of ciprofloxacin when CFPU was incubated by enzyme solutions than by phosphate-buffer saline (PBS). Results showed that the drug release was enhanced as the concentration of the enzyme increased. The antimicrobial activities of degradation solutions were tested by broth dilution assay. The enzyme degradation solutions exhibited an ability to kill bacteria. The cell cytotoxicity assay indicated that the degradation products were hypotoxicity to human beings according to the cytotoxicity grade of United States Pharmacopoeia (USP).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

963-967

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. S. Temenoff, A. G. Mikos: the intersection of biology and materials science: Biomaterials (Science Press, Peiking 2009), In Chinese.

Google Scholar

[2] F. Crisante, I. Francolini, and M. Bellusci: Eur. J. Pharm. Sci. vol. 36 (2009), pp.555-564.

Google Scholar

[3] A. Piozzi, I. Francolini, L. Occhiaperti, M. Venditti, and W. Marconi: Int. J. Pharm. vol. 280 (2004), pp.173-183.

Google Scholar

[4] H. Forster, J.S. Marotta, K. Heseltine, R. Milner, and S. Jani: J. Orthop. Res. vol. 22 (2004), pp.671-677.

DOI: 10.1016/j.orthres.2003.10.003

Google Scholar

[5] J.M. Schierholz, H. Steinhauser, A.F. Rump, R. Berkels, and G. Pulverer: Biomaterials vol. 18 (1997), pp.839-844.

DOI: 10.1016/s0142-9612(96)00199-8

Google Scholar

[6] M.D. Phaneuf, M.J. Bide, M. Szycher, M.B. Gale, H. Huang, J.C. Yang, F.W. LoGerfo, and W.C. Quist: Asaio J. vol. 47 (2001), pp.634-640.

DOI: 10.1097/00002480-200111000-00013

Google Scholar

[7] I. Francolini, L. D'Ilario, E. Guaglianone, G. Donelli, A. Martinelli, and A. Piozzi: Acta Biomater vol. 22 (2010), pp.3482-3490.

DOI: 10.1016/j.actbio.2010.03.042

Google Scholar

[8] U. Makal, L. Wood, D.E. Ohman, and K.J. Wynne: Biomaterials vol. 27 (2006), pp.1316-1326

DOI: 10.1016/j.biomaterials.2005.08.038

Google Scholar

[9] G. Amitai, J. Andersen, S. Wargo, G. Asche, J. Chir, R. Koepsel, and A.J. Russell: Biomaterials vol. 30 (2009), pp.6522-6529.

DOI: 10.1016/j.biomaterials.2009.08.027

Google Scholar

[10] P. Basak, B. Adhikari, I. Banerjee, and T.K. Maiti: J. Mater. Sci. Mater. Med. vol. 20 Suppl 1 (2009), p. S213-S221.

Google Scholar

[11] G.L.Y. Woo, M.W. Mittelman, and J.P. Santerre: Biomaterials vol. 21 (2000), pp.1235-1246.

Google Scholar

[12] M.L. Yang, and J.P. Santerre: Biomacromolecules vol. 2 (2001), pp.134-141.

Google Scholar

[13] G.L.Y. Woo, M.L. Yang, H.Q. Yin, F. Jaffer, M.W. Mittelman, and J.P. Santerre: J. Biomed. Mater. Res. vol. 59 (2002), pp.35-45.

Google Scholar