[1]
I. Prigogene, R. Lefever, Symmetry breaking instabilities in dissipative systems II, J. Chem. Phys. 48 (1968) 1665-1700.
Google Scholar
[2]
K. Brown, F.A. Davidson, Global bifurcation in the Brusselator system, Nonlinear Anal. TMA 12 (1995) 1713-1725.
DOI: 10.1016/0362-546x(94)00218-7
Google Scholar
[3]
R. Peng, M. Wang, Pattern formation in the Brusselator system, J. Math. Anal. Appl. 309 (2005) 151-166.
Google Scholar
[4]
Y. You, Global dynamics of the Brusselator equations, Dyn. Partial Diff. Eqns. 4 (2007) 167-196.
Google Scholar
[5]
B. Li, M. Wang, Diffusive driven instability and Hopf bifurcation in the Brusselator system, Appl. Math. Mech., 29 (2008) 825-832.
DOI: 10.1007/s10483-008-0614-y
Google Scholar
[6]
M. Ghergu, Non-constant steady-state solutions for Brusselator type systems, Nonlinearity 21 (2008) 2331-2345.
DOI: 10.1088/0951-7715/21/10/007
Google Scholar
[7]
R. Peng, M. Wang, On steady-state solutions of the Brusselator-type system, Nonlinear Anal. TMA 71 (2009) 1389-1394.
Google Scholar
[8]
F. Yi, J.Wei, J. Shi, Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonlinear Anal. 9 (2008) 1038-1051.
DOI: 10.1016/j.nonrwa.2007.02.005
Google Scholar
[9]
F. Yi, J. Wei, J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations 246 (2009) 1944-1977.
DOI: 10.1016/j.jde.2008.10.024
Google Scholar
[10]
Q. Lu, Qualitative Method and Bifurcation of Ordinary Differential Equations, Beijing Aviation and Spaceflight University Press, Beijing, 1989.
Google Scholar