A Novel Variable Step-Size Algorithm for Implicit Integration

Article Preview

Abstract:

A new variable step-size numerical algorithm for implicit integration is discussed in this paper. The scheme for increase and decrease of step size is discussed according to the difference of output variable value. The next step size is calculated through the variable coefficient method and the limitation rules. The convergence and accuracy are testified by the simulation result. Compared with the common used ode45 algorithm, the algorithm has more computing efficiency with a certain calculation precision.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 255-260)

Pages:

2159-2163

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Y. Chung, S. C. Ng and S. H. Leung: In: Proceedings of IEEE International Conference on Evolutionary Computation(1996) , pp.407-410.

Google Scholar

[2] R. Bulirsch and J. Stoer: Numerische Mathematik Vol. 8(1966), p.1–13.

Google Scholar

[3] T.E. Hull, W.H. Enright, B.M. Fellen, and A.E. Sedgwick: SIAM Journal on Numerical Analysis Vol. 9(1972), p.603–637

DOI: 10.1137/0709052

Google Scholar

[4] Zhao Shengkui, Man Zhihong, Khoo Suiyang: In: 2nd IEEE Conference on Industrial Electronics and Applications(2007) , pp.2340-2345.

DOI: 10.1109/iciea.2008.4582902

Google Scholar

[5] Guo Ruipeng, Han Zhenxiang: Automation of Electic Power Vol. 21(1997), pp.7-10.

Google Scholar

[6] Gelfand, S.B., Yongbin Wei, Krogmeier, J.V: IEEE Transactions on Signal Processing Vol. 47(1997), pp.3277-3288.

DOI: 10.1109/78.806072

Google Scholar

[7] Joseph B. Evans, Ping Xue, Bede Liu: IEEE Transactions on Signal Processing Vol. 41(2002), pp.2517-2535.

Google Scholar

[8] Raymond Holsapple, Ram Iyer, David Doman: American Control Conference(2006).

Google Scholar

[9] Zhou You-hang,Lin Jie-huang,Zhang Jian-xun: Modelling, Simulation and Optimization WMSO '08(2008), pp.459-463.

Google Scholar

[10] J. Stoer and R. Bulirsch: Introduction to Numerical Analysis(Springer-Verlag New York, New York, Third edition2002).

Google Scholar

[11] Abdellatif EI Ghazi, Said EI Hajji, Luc Giraud, and Serge Gratton: Journal of Computational and Applied Mathematics Vol. 219(2008), pp.398-407.

DOI: 10.1016/j.cam.2007.11.009

Google Scholar

[12] Ken-ichi Yamamoto, and Shigeru Hanba: Journal of Magnetism and Magnetic Materials Vol. 320(2008), pp.539-541.

Google Scholar

[13] M. Op de Beeck, D. Van Dyck, W. Coene: Ultramicroscopy Vol. 64(1996), pp.167-183.

DOI: 10.1016/0304-3991(96)00058-7

Google Scholar

[14] Szidarovszky F,Yakowitz S, Ming Shi: Procedures of numerical analysis(Shanghai Science and Technology Publishing House, Shanghai 1982), in Chinese

Google Scholar