A Study on the Tensile Property of Jute Yarns Using Weibull Distribution

Article Preview

Abstract:

The characteristics of natural yarns are inconsistent in their mechanical property. The tensile strength of jute yarns is an intricate parameter, which can not be fully described using single value. This necessitates the study of the jute yarn strength distribution and efficient experimental methods for its measurement. Here Weibull model is used to describe the statistical nature of the tensile strength. However, the experimental process widely uses for obtaining the two parameters Weibull model which is described for this experiment. The Weibull modulus of the untreated and NaOH treated jute yarns were determined and it suggests that the treated yarns are better than the untreated yarns. The tensile strength of NaOH treated jute yarns increased to 219.93 MPa compared to the untreated yarns which was 177.32 MPa. For the treated yarns the coefficient value R2 is 0.9829, which indicates good degree of linearity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 264-265)

Pages:

1917-1921

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. S. Watson and R. L. Smith: J Mat. Sci. Vol. 20 (1985), p.3260.

Google Scholar

[2] L. Pambaguian and R. Mevrel: Compos Part A Vol. 28 (1997), p.549.

Google Scholar

[3] D. Tripati, N. Lopattananon and F. R. Jones: compos Part A, Vol. 29A (1998), p.1099.

Google Scholar

[4] D. J. Marks and F. R. Jones: Compos Part A, Vol. 33 (2002), p.1293.

Google Scholar

[5] J. Andersons, R. Joffe, M. Hojo, S. Ochiai: Compos Sci Technol Vol. 62 (2002), p.131.

Google Scholar

[6] S. V. Zwaag: JTEVA Vol. 17, No. 5 (1989), p.292.

Google Scholar

[7] Y. Paramonov and J. Andersons: Compos Part A Vol. 38 (2007), p.1227.

Google Scholar

[8] N. E. Zafeiropoulos and C. A. Baillie: Compos Part A Vol. 38 (2007), p.629.

Google Scholar

[9] Z. P. Xia, J. Y. Yu, L. D. Cheng, L. F. Liu and W. M. Wang: Compos Part A Vol. 40 (2009), p.54.

Google Scholar

[10] J. Andersons, E. Sparnings, R. Joffe and L. Wallstrom: Compos. Sci. Technol. Vol. 65 (2005), p.693.

Google Scholar

[11] Z. Chi, T. Chou and G. Shen: J Mater. Sci. Vol. 19 (1984), p.3319.

Google Scholar

[12] M. Tiryakioglu: J. Mater. Sci. Vol. 43 (2008), p.793.

Google Scholar

[13] D. Ray, B. K. Sarkar, A. K. Rana and N. R. Bose: Bull. Mater. Sci. Vol. 24, No. 2 (2001), p.129.

Google Scholar

[14] W. Wang, Z. Cai, and J. Y. Yu: J. Eng. Fiber. Fabr. Vol. 3, No2 (2008), p.1.

Google Scholar

[15] E. Sinha and S. K. Rout: J. Mater. Sci. Vol. 43 (2008), p.2590.

Google Scholar

[16] M. J. John and R. D. Anandjiwala: Polym. Compos. Vol. 29 (2008), p.187.

Google Scholar

[17] S. Sengupta, P. K. Ganguly and G.K. Bhattacharyya: IE(I) J-TX Vol. 84 (2003), p.1.

Google Scholar

[18] O.A. Khondker, U.S. Ishiaku, A. Nakai and H. Hamada: J Polymer Environ Vol. 13, No 2 (2005) p.115.

Google Scholar

[19] J. Gassan, and A. K. Bledzki: Comp. Sci. Technol. Vol. 59 (1999a), p.1303.

Google Scholar

[20] J. Gassan, and A. K. Bledzki: J. Appl. Polym. Sci. Vol. 71 (1999b), p.623.

Google Scholar

[21] E. Sinha and S. K. Rout: Bull. Mater. Sci. Vol. 32, No. 1 (2009), p.65.

Google Scholar