[1]
Hartung, P. D. (1980). Tool Wear in Titanium Machining. Massachusetts Institute of Technology: MSc Thesis.
Google Scholar
[2]
Komanduri, R. and Von Turkovich, B. F. (1981). New Observations on the Mechanism of Chip Formation when Machining Titanium Alloys. Wear 69: 179-188.
DOI: 10.1016/0043-1648(81)90242-8
Google Scholar
[3]
Komanduri, R. (1982). Some Clarifications on the Mechanics of Chip Formation When Machining Titanium Alloys. Wear 76: 15-34.
DOI: 10.1016/0043-1648(82)90113-2
Google Scholar
[4]
C.H. Che-Haron, Tool life and surface integrity in turning titanium alloy, Journal of Material Processing Technology 118 (2001): 231-237.
DOI: 10.1016/s0924-0136(01)00926-8
Google Scholar
[5]
S. Lei, W. Liu, High-speed machining of titanium alloys using the driven rotary tool, International Journal of Machine Tools & Manufacture 42 (2002): 653-661.
DOI: 10.1016/s0890-6955(02)00012-3
Google Scholar
[6]
M.V. Ribeiro, M.R.V. Moreira, J.R. Ferreira, Optimization of titanium alloy (6Al-4V) machining, Journal of Material Processing Technology 143-144 (2003): 458-463.
DOI: 10.1016/s0924-0136(03)00457-6
Google Scholar
[7]
C.H. Che-Haron, A. Jawaid, The effect of machining on surface integrity of titanium alloy Ti-6% Al-4% V, Journal of Material Processing Technology 166 (2005): 188-192.
DOI: 10.1016/j.jmatprotec.2004.08.012
Google Scholar
[8]
S. Sun, M. Brandt, M.S. Dargusch, Characteristics of cutting forces and chip formation in machining of titanium alloys, International Journal of Machine Tools & Manufacture 49 (2009): 561-568.
DOI: 10.1016/j.ijmachtools.2009.02.008
Google Scholar
[9]
Z. Zhao, S.Y. Hong, Cooling strategies for cryogenic machining from a material viewpoint, Journal of Material Engineering and Performance 1(5) (1992): 669-678.
DOI: 10.1007/bf02649248
Google Scholar
[10]
Z.Y. Wang, K.P. Rajurkar, Cryogenic machining of hard-to-cut materials, Wear 239 (2000) 168-175.
DOI: 10.1016/s0043-1648(99)00361-0
Google Scholar
[11]
S.Y. Hong, Economical and Ecological Cryogenic Machining, Journal of Manufacturing Science and Engineering, ASME 123 (2001): 331-338.
DOI: 10.1115/1.1315297
Google Scholar
[12]
N.R. Dhar. S. Paul, A.B. Chattopadhyay, Role of cryogenic cooling on cutting temperature in turning steel, Transactions of ASME 124 (2002): 146-154.
DOI: 10.1115/1.1413774
Google Scholar
[13]
S.Y. Hong, I. Markus, W. -C. Jeong, New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V, International Journal of Machine Tools & Manufacture 41 (2001): 2245-2260.
DOI: 10.1016/s0890-6955(01)00041-4
Google Scholar
[14]
K.A. Venugopal, S. Paul, A.B. Chattopadhyay, Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling, Wear 262 (2007): 1071-1078.
DOI: 10.1016/j.wear.2006.11.010
Google Scholar
[15]
M. I. Ahmed, A.F. Ismail, Y.A. Abakr, A.K.M. Nurul Amin, Effectiveness of cryogenic machining with modified tool holder, Journal of Material Processing Technology 185 (2007): 91-96.
DOI: 10.1016/j.jmatprotec.2006.03.123
Google Scholar
[16]
A.A. Khan, M.I. Ahmed, Improving tool life using cryogenic cooling, Journal of Material Processing Technology 196 (2008): 49-154.
DOI: 10.1016/j.jmatprotec.2007.05.030
Google Scholar